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1 Introduction

It is an attractive idea to interpret matter geometrically, and to identify conserved at-
tributes of matter with topological properties of the geometry. Kelvin made the pioneering
suggestion to model atoms as knotted vortices in an ideal fluid [1]. Each atom type would
correspond to a distinct knot, and the conservation of atoms in physical and chemical
processes (as understood in the 19th century) would follow from the inability of knots to
change their topology. Kelvin’s model has not survived because atoms are now known
to be structured and divisible, with a nucleus formed of protons and neutrons bound
together, surrounded by electrons. At high energies, these constituents can be separated.
It requires of order 1 eV to remove an electron from an atom, but a few MeV to remove
a proton or neutron from a nucleus.

Atomic and nuclear physics has progressed, mainly by treating protons, neutrons and
electrons as point particles, interacting through electromagnetic and strong nuclear forces
[2]. Quantum mechanics is an essential ingredient, and leads to a discrete spectrum of
energy levels, both for the electrons and nuclear particles. The nucleons (protons and
neutrons) are themselves built from three pointlike quarks, but little understanding of
nuclear structure and binding has so far emerged from quantum chromodynamics (QCD),
the theory of quarks. These point particle models are conceptually not very satisfactory,
because a point is clearly an unphysical idealisation, a singularity of matter and charge
density. An infinite charge density causes difficulties both in classical electrodynamics [3]
and in quantum field theories of the electron. Smoother structures carrying the discrete
information of proton, neutron and electron number would be preferable.

In this paper, we propose a geometrical model of neutral atoms where both the proton
number P and neutron number N are topological and none of the constituent particles
are pointlike. In a neutral atom the electron number is also P , because the electron’s
electric charge is exactly the opposite of the proton’s charge. For given P , atoms (or their
nuclei) with different N are known as different isotopes.

A more recent idea than Kelvin’s is that of Skyrme, who proposed a nonlinear field
theory of bosonic pion fields in 3+1 dimensions with a single topological invariant, which
Skyrme identified with baryon number [4]. Baryon number (also called atomic mass
number) is the sum of the proton and neutron numbers, B = P+N . Skyrme’s baryons are
solitons in the field theory, so they are smooth, topologically stable field configurations.
Skyrme’s model was designed to model atomic nuclei, but electrons can be added to
produce a model of a complete atom. Protons and neutrons can be distinguished in the
Skyrme model, but only after the internal rotational degrees of freedom are quantised [5].
This leads to a quantised “isospin”, with the proton having isospin up (I3 = 1

2
) and the

neutron having isospin down (I3 = −1
2
), where I3 the third component of isospin. The
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model is consistent with the well-known Gell-Mann–Nishijima relation [6]

Q =
1

2
B + I3 (1.1)

where Q is the electric charge of a nucleus (in units of the proton charge) and B is the
baryon number. Q is integral, because I3 is integer-valued (half-integer-valued) when B
is even (odd). Q equals the proton number P of the nucleus and also the electron number
of a neutral atom. The neutron number is N = 1

2
B − I3. The Skyrme model has had

considerable success providing models for nuclei [7, 8, 9, 10]. Despite the pion fields being
bosonic, the quantised Skyrmions have half-integer spin if B is odd [11]. But a feature of
the model is that proton number and neutron number are not separately topological, and
electrons have to be added on.

The Skyrme model has a relation to 4-dimensional fields that provides some motivation
for the ideas discussed in this paper. A Skyrmion can be well approximated by a projection
of a 4-dimensional Yang–Mills field. More precisely, one can take an SU(2) Yang–Mills
instanton and calculate its holonomy along all lines in the (euclidean) time direction [12].
The result is a Skyrme field in 3-dimensional space, whose baryon number B equals the
instanton number.

So a quasi-geometrical structure in 4-dimensional space (a Yang–Mills instanton in
flat R4) can be closely related to nuclear structure, but still there is just one topological
charge. A next step, first described in the paper [13], was to propose an identification
of smooth, curved 4-manifolds with the fundamental particles in atoms – the proton,
neutron and electron. Suitable examples of manifolds were suggested. These manifolds
were not all compact, and the particles they modelled were not all electrically neutral.
One of the more compelling examples was Taub-NUT space as a model for the electron.
By studying the Dirac operator on the Taub-NUT background, it was shown how the
spin of the electron can arise in this context [14]. There has also been an investigation
of multi-electron systems modelled by multi-Taub-NUT space [15, 16]. However, there
are some technical difficulties with the models of the proton and neutron, and no way
has yet been found to geometrically combine protons and neutrons into more complicated
nuclei surrounded by electrons. Nor is it clear in this context what exactly should be the
topological invariants representing proton and neutron number.

A variant of these ideas is a model for the simplest atom, the neutral hydrogen atom,
with one proton and one electron. This appears to be well modelled by CP2, the complex
projective plane3. The fundamental topological property of CP2 is that it has a generating
2-cycle with self-intersection 1. The second Betti number is b2 = 1, which splits into
b+2 = 1 and b−2 = 0. A complex line in CP2 represents this cycle, and in the projective

3 CP2 had a different interpretation in [13].
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plane, two lines always intersect in one point. A copy of this cycle together with its
normal neighbourhood can be interpreted as the proton part of the atom, whereas the
neighbourhood of a point dual to this is interpreted as the electron. The neighbourhood
of a point is just a 4-ball, with a 3-sphere boundary, but this is the same as in the Taub-
NUT model of the electron, which is topologically just R4. The 3-sphere is a twisted
circle bundle over a 2-sphere (the Hopf fibration) and this is sufficient to account for the
electron charge.

In this paper, we have a novel proposal for the proton and neutron numbers. The 4-
manifolds we consider are compact, to model neutral atoms. Our previous models always
required charged particles to be non-compact so that the electric flux could escape to
infinity, and this is an idea we will retain. We also restrict our manifolds to be complex
algebraic surfaces, and their Chern numbers will be related to the proton and neutron
numbers. There are more than enough examples to model all currently known isotopes
of atoms. We will retain CP2 as the model for the hydrogen atom.

2 Topology and Physics of Algebraic Surfaces

Complex surfaces [17] provide a rich supply of compact 4-manifolds. They are principally
classified by two integer topological invariants, denoted c21 and c2. For a surface X, c1
and c2 are the Chern classes of the complex tangent bundle. c2 is an integer because X
has real dimension 4, whereas the (dual of the) canonical class c1 is a particular 2-cycle
in the second homology group, H2(X). c21 is the intersection number of c1 with itself, and
hence another integer.

There are several other topological invariants of a surface X, but many are related to c21
and c2. Among the most fundamental are the Hodge numbers. These are the dimensions
of the Dolbeault cohomology groups of holomorphic forms. In two complex dimensions
the Hodge numbers are denoted hi,j with 0 ≤ i, j ≤ 2. They are arranged in a Hodge
diamond, as illustrated in figure 1. Serre duality, a generalisation of Poincaré duality,
requires this diamond to be unchanged under a 180◦ rotation. For a connected surface,
h0,0 = h2,2 = 1.

Complex algebraic surfaces are a fundamental subclass of complex surfaces [18, 19].
A complex algebraic surface can always be embedded in a complex projective space CPn,
and thereby acquires a Kähler metric from the ambient Fubini–Study metric on CPn.
For any Kähler manifold, the Hodge numbers have an additional symmetry, hi,j = hj,i.
For a surface, this gives just one new relation, h0,1 = h1,0. Not all complex surfaces are
algebraic: some are still Kähler and satisfy this additional relation, but some are not
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Figure 1: The Hodge diamond for a general complex surface (left) and its entries in terms
of Betti numbers for an algebraic surface (right).

Kähler and do not satisfy it.

Particularly interesting for us are the holomorphic Euler number χ, which is an alter-
nating sum of the entries on the top right (or equivalently, bottom left) diagonal of the
Hodge diamond, and the analogous quantity for the middle diagonal, which we denote θ.
More precisely,

χ = h0,0 − h0,1 + h0,2 , (2.1)

θ = −h1,0 + h1,1 − h1,2 . (2.2)

(Note the sign choice for θ.) The Euler number e and signature τ can be expressed in
terms of these as

e = 2χ+ θ , (2.3)

τ = 2χ− θ . (2.4)

The first of these formulae reduces to the more familiar alternating sum of Betti numbers
e = b0 − b1 + b2 − b3 + b4, because each Betti number is the sum of the entries in the
corresponding row of the Hodge diamond. The second formula is the less trivial Hodge
index theorem. τ is more fundamentally defined by the splitting of the second Betti
number into positive and negative parts, b2 = b+2 + b−2 . Over the reals the intersection
form on the second homology group H2(X) is non-degenerate and can be diagonalised.
b+2 is then the dimension of the positive subspace, and b−2 the dimension of the negative
subspace. The signature is τ = b+2 − b−2 .

The Chern numbers are related to χ and θ through the formulae

c21 = 2e+ 3τ = 10χ− θ , c2 = e = 2χ+ θ . (2.5)

Their sum gives the Noether formula χ = 1
12

(c21 + c2), which is always integral.

For an algebraic surface, there are just three independent Hodge numbers and they
are uniquely determined by the Betti numbers b1, b

+
2 and b−2 . The Hodge diamond must
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Figure 2: Hodge diamonds for the projective plane CP2 (left) and for a K3 surface (right)

take the form shown on the right in figure 1, which gives the correct values for b1, e and
τ . Note that b1 must be even and b+2 must be odd. χ and θ are now given by

χ =
1

2
(1 − b1 + b+2 ) , (2.6)

θ = 1 − b1 + b−2 . (2.7)

If X is simply connected, which accounts for many examples, then b1 = 0. Hodge di-
amonds for the projective plane CP2 and for a K3 surface, both of which are simply
connected, are shown in figure 2. For the projective plane χ = 1 and θ = 1, so e = 3 and
τ = 1, and for a K3 surface χ = 2 and θ = 20, so e = 24 and τ = −16.

Our proposal is to model neutral atoms by complex algebraic surfaces and to interpret
χ as proton number P , and θ as baryon number B. So neutron number is N = θ − χ.
This proposal fits with CP2 having P = 1 and N = 0. We will see later that for each
positive value of P there is an interesting, finite range of allowed N values.

In terms of e and τ ,

P =
1

4
(e+ τ) , B =

1

2
(e− τ) , N =

1

4
(e− 3τ) . (2.8)

Note that for a general, real 4-manifold, these formulae for P and N might be fractional,
and would need modification. It is also easy to verify that in terms of P and N ,

c21 = 9P −N , (2.9)

c2 = e = 3P +N , (2.10)

τ = P −N . (2.11)

The simple relation of signature τ to the difference between proton and neutron numbers
is striking. If we write N = P + Nexc , where Nexc denotes the excess of neutrons over
protons (which is usually zero or positive, but can be negative), then τ = −Nexc.
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If an algebraic surface X is simply connected then b1 = 0, and in terms of P and N ,

b+2 = 2P − 1 , b−2 = P +N − 1 = 2P − 1 +Nexc . (2.12)

These formulae will be helpful when we consider intersection forms in more detail.

The class of surfaces that we will use, as models of atoms, are those with c21 and c2
non-negative. Many of these are minimal surfaces of general type. Perhaps the most
important results on the geometry of algebraic surfaces are certain inequalities that the
Chern numbers of minimal surfaces of general type have to satisfy. The basic inequalities
are that c21 and c2 are positive. Also, there is the Bogomolov–Miyaoka–Yau (BMY)
inequality which requires c21 ≤ 3c2, and finally there is the Noether inequality 5c21−c2+36 ≥
0. These inequalities can be converted into the following inequalities on P and N :

P > 0 , 0 ≤ N < 9P , N ≤ 7P + 6 . (2.13)

All integer values of P and N satisfying these are allowed. The allowed region is shown
in figure 3, and corresponds to the allowed region shown on page 229 of [17], or in the
article [20].

There are also the elliptic surfaces (including the Enriques surface and K3 surface)
where c21 = 0 and c2 is non-negative, and we shall include these among our models. Here,
P ≥ 0 and N = 9P , so c2 = 12P and τ = −8P . CP2 is also allowed, even though it is
rational and not of general type, because c21 and c2 are positive. In addition to CP2, there
are further surfaces on the BMY line c21 = 3c2 [21], which have P > 1 and N = 0.

Physicists usually denote an isotope by proton number and baryon number, where
proton number P is determined by the chemical name, and baryon number is P + N .
For example, the notation 56Fe means the isotope of iron with P = 26 and N = 30. The
currently recognised isotopes are shown in figure 4.

The shape of the allowed region of algebraic surfaces qualitatively matches the region
of recognised isotopes, and this is the main justification for our proposal. For example,
for P = 1, the geometric inequalities allow N to take values from 0 up to 9. This
corresponds to a possible range of hydrogen isotopes from 1H to 10H. Physically, the well-
known hydrogen isotopes are the proton, deuterium and tritium, that is, 1H, 2H and 3H
respectively, but nuclear physicists recognise isotopes of a quasi-stable nature (resonances)
up to 7H, with N = 6.

The minimal models for the common isotopes, the proton alone, and deuterium, each
bound to one electron, are CP2 and the complex quadric surface Q. The quadric is the
product Q = CP1 × CP1, with e = 4 and τ = 0. We shall say more about its intersection
form below.
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Figure 3: The allowed region of proton numbers P , and neutron numbers N , for atoms
modelled as algebraic surfaces. The boundaries correspond to inequalities on
the Chern numbers. Note the change of slope from 9 to 7 at the point with
P = 3, N = 27. The line N = P corresponds to surfaces with zero signature
(τ = 0).
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Figure 4: Nuclear isotopes. The horizontal axis is proton number P (Z in physics nota-
tion) and the vertical axis is neutron number N . The shading (colouring online)
indicates the lifetime of each isotope, with black denoting stability (infinite life-
time).
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For P = 2, N is geometrically allowed in the range 0 to 18. The corresponding
algebraic surfaces should model helium isotopes from 2He to 20He. Isotopes from 3He
up to 10He are physically recognised. All these potentially form neutral atoms with two
electrons. The helium isotope with no neutrons is not listed in some nuclear tables, but
there does exist an unbound diproton resonance, and diprotons are sometimes emitted
when heavier nuclei decay. The most common, stable helium isotope is 4He, with two
protons and two neutrons, but 3He is also stable. 4He nuclei are also called alpha-particles,
and play a key role in nuclear processes and nuclear structure. It is important to have
a good geometrical model of an alpha-particle, which ideally should match the cubically
symmetric B = 4 Skyrmion that is a building block for many larger Skyrmions [22, 23, 8,
10].

3 Valley of Stability

Running through the nuclear isotopes is the valley of stability [2]. In figure 4, this is
the irregular curved line of stable nuclei marked in black. On either side, the nuclei
are unstable, with lifetimes of many years near the centre of the valley, reducing to
microseconds further away. Sufficiently far from the centre are the nuclear drip lines,
where a single additional proton or neutron has no binding at all, and falls off in a time
of order 10−23 seconds.

For small nuclei, for P up to about 20, the valley is centred on the line N = P . In
the geometrical model, this line corresponds to surfaces with signature τ = 0. For larger
P , nuclei in the valley have a neutron excess, Nexc, which increases slowly from just a
few when P is near 20 to over 50 for the quasi-stable uranium isotopes with P = 92, and
slightly more for the heaviest artifically produced nuclei with P approaching 120.

In standard nuclear models, the main effect explaining the valley is the Pauli principle.
Protons and neutrons have a sequence of rather similar 1-particle states of increasing
energy, and just one particle can be in each state. For given baryon number, the lowest-
energy state has equal proton and neutron numbers, filling the lowest available states. If
one proton is replaced by one neutron, the proton state that is emptied has lower energy
than the neutron state that is filled, so the total energy goes up. An important additional
effect is a pairing energy that favours protons to pair up and neutrons to pair up. Most
nuclei with P and N both odd are unstable as a result.

For larger values of P , the single-particle proton energies tend to be higher than the
single-particle neutron energies, because in addition to the attractive, strong nuclear forces
which are roughly the same for protons and neutrons, there is the electrostatic Coulomb
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repulsion that acts between protons alone. This effect becomes important for nuclei with
large P , and favours neutron-rich nuclei. It also explains the instability of all nuclei with
P larger than 83. These nuclei simply split up into smaller nuclei, either by emitting
an alpha-particle, or by fissioning into larger fragments. However, the lifetimes can be
billions of years in some cases, which is why uranium, with P = 92, is found in nature in
relatively large quantities.

Note that if N = P , then the electric charge is half the baryon number, and according
to formula (1.1), the third component of isospin is zero. By studying nuclear ground states
and excited states, one can determine the complete isospin, and it is found to be minimal
for stable nuclei. So nuclei with N = P have zero isospin. When the baryon number is
odd, the most stable nuclei have N just one greater than P (if P is not too large), and the
isospin is 1

2
. Within the Skyrme model, isospin arises from the quantisation of internal

degrees of freedom, associated with an SO(3) symmetry acting on the pion fields. There is
an energy contribution proportional to the squared isospin operator I2, analogous to the
spin energy proportional to J2. In the absence of Coulomb effects, the energy is minimised
by fixing the isospin to be zero or 1

2
. The Coulomb energy competes with isospin, and

shifts the total energy minimum towards neutron-rich nuclei.

These are the general trends of nuclear energies and lifetimes. However there is a
lot more in the detail. Each isotope has its own character, depending on its proton and
neutron numbers. This is most clear in the energy spectra of excited states, and the spins
of the ground and excited states. Particularly interesting is the added stability of nuclei
where either the proton or neutron number is magic. The smaller magic numbers are 2, 8,
20, 28, 50. It is rather surprising that protons and neutrons can be treated independently
with regard to the magic properties. This appears to contradict the importance of isospin,
in which protons and neutrons are treated as strongly influencing each other.

Particularly stable nuclei are those that are doubly magic, like 4He, 16O, 40Ca and
48Ca. 40Ca is the largest stable nucleus with N = P . 48Ca is also stable, and occurs in
small quantities in nature, but is exceptionally neutron-rich for a relatively small nucleus.

The important issue for us here is to what extent our proposed geometrical model
based on algebraic surfaces is compatible with these nuclear phenomena, not forgetting
the electron structure in a neutral atom. There are some broad similarities. First there
is the “geography” of surfaces we have discussed above, implying that the geometrical
inequalities restrict the range of neutron numbers. Algebraic geometers also refer to
“botany”, the careful construction and study of surfaces with particular topological in-
variants. The patterns are very complicated. Some surfaces are simple to construct,
others less so, and their internal structure is very variable. This is analogous to the com-
plications of the nuclear landscape, and the similar complications (better understood) of
the electron orbitals and atomic shell structure.
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Rather remarkable is that the line of nuclear stability where N = P corresponds to
the simple geometrical condition that the signature τ is zero. We have not yet tried
to pinpoint an energy function on the space of surfaces, but clearly it would be easy
to include a dominant contribution proportional to τ 2, whose minimum would be in
the desired place. Mathematicians have discovered that it is much easier to construct
surfaces on this line, and on the neutron-rich side of it, where τ is negative, than on the
proton-rich side. There are always minimal surfaces on the neutron-rich side which are
simply connected, but not everywhere on the proton-rich side. The geometry of surfaces
therefore distinguishes protons from neutrons rather clearly. This is attractive for the
physical interpretation, as it can be regarded as a prediction of an asymmetry between
the proton and neutron. In standard nuclear physics it is believed that in an ideal world
with no electromagnetic effects, there would be an exact symmetry between the proton
and neutron, but in reality they are not the same, partly because of Coulomb energy,
but more fundamentally, because their constituent up (u) and down (d) quarks are not
identical in their masses, making the proton (uud) less massive than the neutron (udd),
despite its electric charge.

The geometrical model would need an energy contribution that favours neutrons over
protons for the larger nuclei and atoms. One possibility has been explored by LeBrun
[24, 25]. This is the infimum, over complex surfaces with given topology, of the L2 norm
of the scalar curvature. For surfaces with b1 even, including all surfaces that are simply
connected, this infimum is simply a constant multiple of c21. The scalar curvature can be
zero for surfaces on the line c21 = 0, for example the K3 surface, which is the extreme
of neutron-richness, with P = 2 and N = 18. It would be interesting to consider more
carefully the energy landscape for an energy that combines τ 2 and a positive multiple of
the L2 norm of scalar curvature.

4 Intersection Form

A complex surface X is automatically oriented, so any pair of 2-cycles has an unambiguous
intersection number [26]. Given a basis αi of 2-cycles for the second homology group
H2(X), the matrix Ωij of intersection numbers is called the intersection form of X. Ωij ≡
Ω(αi, αj) is the intersection number of basis cycles αi and αj, and the self-intersection
number Ωii is the intersection number of αi with a generic smooth deformation of itself. Ω
is a symmetric matrix of integers, and by Poincaré duality it is unimodular (of determinant
±1). Over the reals, such a symmetric matrix is diagonalisable, and the diagonal entries
are either +1 or −1. The numbers of each of these are b+2 and b−2 , respectively, and we
have already given an interpretation of them for simply-connected algebraic surfaces X
in terms of P and N in equation (2.12) above.
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However, diagonalisation over the reals does not make sense for cycles, because one
can end up with fractional cycles in the new basis. One may only change the basis of
cycles using an invertible matrix of integers, whose effect is to conjugate Ω by such a
matrix. The classification of intersection forms is finer over the integers than the reals.

For almost all algebraic surfaces, Ω is indefinite. b+2 is always positive, and b−2 is
positive too, except for surfaces with b1 = 0 and B = θ = 1. So the only surfaces
for which the intersection form Ω is definite are CP2, and perhaps additionally the fake
projective planes, for which we have not found a physical interpretation. For CP2, with
P = 1 and N = 0, the intersection form is the 1 × 1 matrix Ω = (1).

Non-degenerate, indefinite forms over the integers have a rather simple classification.
The basic dichotomy is between those that are odd and those that are even. An odd
form is one for which at least one entry Ωii is odd, or more invariantly, Ω(α, α) is odd for
some 2-cycle α. An odd form can always be diagonalised, with entries +1 and −1 on the
diagonal.

Even forms are more interesting. Here Ω(α, α) is even for any cycle α. The simplest
example is

Ω =

(
0 1
1 0

)
. (4.1)

This is the intersection form of the quadric Q, with the two CP1 factors as basis cycles, α1

and α2. If α = xα1 + yα2 then Ω(α, α) = 2xy, so is always even. Over the reals this form
can be diagonalised and has entries +1 and −1 (the eigenvalues). So it has zero signature.
But the diagonalisation involves fractional matrices, and is not possible over the integers.
The intersection form (4.1) is called the “hyperbolic plane”. A second ingredient in even
intersection forms is the matrix −E8. This is the negative of the Cartan matrix of the
Lie algebra E8 (with diagonal entries −2). It is even and unimodular. By itself this form
is negative definite, but when combined with hyperbolic plane components, the result is
indefinite, as needed. The most general (indefinite) even intersection form for an algebraic
surface can be brought to the block diagonal form

Ω = l

(
0 1
1 0

)
+m(−E8) , (4.2)

with l > 0 and m ≥ 0. l must be odd, and the Betti numbers are b+2 = l and b−2 = l+ 8m.
The signature is τ = −8m.

For most surfaces, the signature is not a multiple of 8, so the intersection form is odd.
If the signature is a multiple of 8, it may be even. For given Betti numbers, there could
be two distinct minimal surfaces (or families of these), one with an odd intersection form,
and the other with an even intersection form. We do not know if surfaces with both types
of intersection form always occur.
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We can reexpress these conditions in terms of the physical numbers P and N . If
Nexc = N − P is neither zero nor a positive multiple of 8, then the intersection form
must be odd. If N = P , then the intersection form can be of the hyperbolic plane type

l

(
0 1
1 0

)
, with l = 2P − 1, or it might still be odd. Notice that l is odd, as it must be.

The isotopes for which even intersection forms are possible therefore include all those with
N = P . These are numerous. In addition to the stable isotopes with N = P that occur up
to 40Ca, with P = 20, there are many that are quasi-stable, like 52Fe, with P = 26. The
heaviest recognised isotopes with N = P are 100Sn and perhaps 108Xe, with P = 50 and
P = 54. Our geometrical model suggests that the additional stability of these isotopes is
the result of the nontrivial structure of an even intersection form.

If Nexc = 8m then the intersection form can be of type (4.2), again with l = 2P − 1,
but it might also be odd. Examples are the Enriques surface, for which l = 1 and m = 1,
and the K3 surface, for which l = 3 and m = 2. The potential isotopes corresponding
to these surfaces are 10H and 20He. These are both so neutron-rich that they have not
been observed, but there are many heavier nuclei (and corresponding atoms) for which
the neutron excess is a multiple of 8.

There is some evidence that nuclei whose neutron excess is a multiple of 8 have addi-
tional stability. The most obvious example is 48Ca, but this is conventionally attributed
to the shell model, as P = 20 and N = 28, both magic numbers. A more interesting and
less understood example is the heaviest known isotope of oxygen, 24O, with a neutron
excess of 8. This example and others do not obviously fit with the shell model. The most
stable isotope of iron is 56Fe, whose neutron excess is 4, but it is striking that 60Fe, whose
neutron excess is 8, has a lifetime of over a million years. Here P = 26 and N = 34.
64Ni, also with a neutron excess of 8, is one of the stable isotopes of nickel. There are also
striking examples of stable or relatively stable isotopes with neutron excesses of 16 or 24.
Some of these are outliers compared to the general trends in the valley of stability. An
example is 124Sn, the heaviest stable isotope of tin, with Nexc = 24. A more careful study
would be needed to confirm if the additional stability of isotopes whose neutron excess is
a multiple of 8 is statistically significant.

There is no evidence that a neutron deficit of 8 has a stabilising effect. In fact, almost
no nuclei with such a large neutron deficit are recognised. The only candidate is 48Ni,
with the magic numbers P = 28 and N = 20.
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5 Other Surfaces

In addition to the minimal surfaces of general type there are various other classes of
algebraic surface. Do these have a physical interpretation?

On a surface X it is usually possible to “blow up” one or more points. The result is
not minimal, because a minimal surface, by definition, is one that cannot be constructed
by blowing up points on another surface. Blowing up one point increases c2 by 1 and
decreases c21 by 1. This is equivalent, in our model, to increasing N by 1, leaving P
unchanged. In other words, one neutron has been added. Topologically, blowing up is

a local process, equivalent to attaching (by connected sum) a copy of CP2. This adds a
2-cycle that has self-intersection −1, but no intersection with any other 2-cycle. The rank
(size) of the intersection form Ω increases by 1, with an extra −1 on the diagonal, and
the remaining entries of the extra row and column all zero. This automatically makes the
intersection form odd, so any previously even form now becomes diagonalisable.

The physical interpretation seems to be that a neutron has been added, well separated
from any other neutron or proton. This adds a relatively high energy, more than if the
additional neutron were bound into an existing nucleus. Minimal algebraic surfaces, and
especially those with even intersection forms, should correspond to tightly bound nuclei
and atoms, having lower energy.

The simplest example is the blow up of one point on CP2. The result is the Hirzebruch

surface H1, which is a non-trivial CP1 bundle over CP1. Its intersection form is

(
1 0
0 −1

)
.

The Hirzebruch surface and quadric are both simply connected and have the same Betti
numbers, b+2 = b−2 = 1, corresponding to P = 1 and N = 1, but the intersection form is
odd for the Hirzebruch surface and even for the quadric. The proposed interpretation is
that the Hirzebruch surface represents a separated proton, neutron and electron, whereas
the quadric represents the deuterium atom, with a bound proton and neutron as its
nucleus, orbited by the electron.

There is an inequality of LeBrun for the L2 norm of the Ricci curvature supporting this
interpretation [24, 25]. The norm increases if points on a minimal surface are blown up,
the increase being a constant multiple of the number of blown-up points. This strongly
indicates that the norm of the Ricci curvature and the norm of the scalar curvature,
possibly with different coefficients, should be ingredients in the physical energy.

So far, we have not considered any surfaces X that could represent a single neutron, or
a cluster of neutrons. Candidates are the surfaces of Type VII. These have c21 = −c2, with
c2 positive, equivalent to P = 0 and arbitrary positive N . These surfaces are complex, but
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are not algebraic and do not admit a Kähler metric. They are also not simply connected.
It is important to have a model of a single neutron. The discussion of blow-ups suggests

that CP2 is another possible model. In this case a single neutron would be associated with
a 2-cycle with self-intersection −1, mirroring the proton inside CP2 being represented by
a 2-cycle with self-intersection +1.

A free neutron is almost stable, having a lifetime of approximately 10 minutes. There
is considerable physical interest in clusters of neutrons. There is a dineutron resonance
similar to the diproton resonance. Recently there has been some experimental evidence
for a tetraneutron resonance, indicating some tendency for four neutrons to bind [27].
Octaneutron resonances have also been discussed, but no conclusive evidence for their
existence has yet emerged. Neutron stars consist of multitudes of neutrons, accompanied
perhaps by a small number of other particles (protons and electrons), but their stability
is only possible because of the gravitational attraction supplementing the nuclear forces.
Standard Newtonian gravity is of course negligible for atomic nuclei.

Products of two Riemann surfaces (algebraic curves) of genus 2 or more are examples
of minimal surfaces of general type, but they are certainly not simply connected. Their
interpretation as atoms should be investigated. Other surfaces, for example ruled sur-
faces, may have some physical interpretation, but our formulae would give them negative
proton and neutron numbers. They do not model antimatter, that is, combinations of
antiprotons, antineutrons and positrons, because antimatter is probably best modelled
using the complex conjugates of surfaces modelling matter. Also bound states of protons
and antineutrons, with positive P and negative N , do not seem to exist.

6 Conclusions

We have proposed a new geometrical model of matter. It goes beyond our earlier proposal
[13] in that it can accommodate far more than just a limited set of basic particles. In
principle, the model can account for all types of neutral atom.

Each atom is modelled by a compact, complex algebraic surface, which as a real
manifold is four-dimensional. The physical quantum numbers of proton number P (equal
to electron number for a neutral atom) and neutron number N are expressed in terms of
the Chern numbers c21 and c2 of the surface, but they can also be expressed in terms of
combinations of the Hodge numbers, or of the Betti numbers b1, b

+
2 and b−2 .

Our formulae for P and N were arrived at by considering the interpretation of just
a few examples of algebraic surfaces – the complex projective plane CP2, the quadric
surface Q, and the Hirzebruch surface H1. Some consequences, which follow from known
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constraints on algebraic surfaces, can therefore be regarded as predictions of the model.
Among these are that P is any positive integer, and that N is bounded below by 0 and
bounded above by the lesser of 9P and 7P + 6. This encompasses all known isotopes. A
most interesting prediction is that the line N = P , which is the centre of the valley of
nuclear stability for small and medium-sized nuclei, corresponds to the the line τ = 0,
where τ = b+2 − b−2 is the signature. Surfaces with τ positive and τ negative are known to
be qualitatively different, which implies that in our model there is a qualitative difference
between proton-rich and neutron-rich nuclei.

For simply connected surfaces with b1 = 0 (or more generally, if b1 is held fixed)
then an increase of P by 1 corresponds to an increase of b+2 by 2. The interpretation
is that there are two extra 2-cycles with positive self-intersection, corresponding to the
extra proton and the extra electron. This matches our earlier models, where a proton
was associated with such a 2-cycle [13], and where multi-Taub-NUT space with n NUTs
modelled n electrons [15, 16]. On the other hand, an increase of N by 1 corresponds to
an increase of b−2 by 1. This means that a neutron is associated with a 2-cycle of negative
self-intersection, which differs from our earlier ideas, where a neutron was modelled by
a 2-cycle with zero self-intersection. It appears now that the intersection numbers are
related to isospin (whose third component is 1

2
for a proton and −1

2
for a neutron) rather

than to electric charge (1 for a proton and 0 for a neutron).

Clearly, much further work is needed to develop these ideas into a physical model of
nuclei and atoms. We have earlier made a few remarks about possible energy functions
for complex surfaces. Some combination of the topological invariants and non-topological
curvature integrals could be explored, and compared with the detailed information on
the energies of nuclei and atoms in their ground states. It will be important to account
for the quantum mechanical nature of the ground and excited states, their energies and
spins. Discrete energy gaps could arise from discrete changes in geometry, for example,
by replacing a blown-up surface with a minimal surface, or by considering the effect of
changing b1 while keeping P and N fixed, or by comparing different embeddings of an
algebraic surface in (higher-dimensional) projective space. In some cases there should
be a discrete choice for the intersection form. There are also possibilities for finding an
analogue of a Schrödinger equation using linear operators, like the Laplacian or Dirac
operator, acting on forms or spinors on a surface. Alternatively, the right approach may
be to consider the continuous moduli of surfaces as dynamical variables, and then quantise
these. Some of the ideas just mentioned have already been investigated in the context
of single particles, modelled by the Taub-NUT space or another non-compact 4-manifold
[14, 28]. Further physical processes, for example, the fission of larger nuclei, and the
binding of atoms into molecules, also need to be addressed.

Before these investigations can proceed, it will be necessary to decide what metric
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structure the surfaces need. Previously, we generally required manifolds to have a self-
dual metric, i.e. to be gravitational instantons, but this now seems too rigid, as there are
very few compact examples. Requiring a Kähler–Einstein metric may be more reasonable,
although these do not exist for all algebraic surfaces [29, 30].
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