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tude K(b,a) to go from a to b. This amplitude is the sum of contri-
bution ¢[x(f)] from cach path.
Kbo) = X ()] (2-14)

over nll paths
fromatob

The contribution of a path has a phase proportional to the action S:
d[x(D)] = const gliMSi=l (2-15)

The action is that for the corresponding classical system [see Eq.
(2-1)]. The constant will be chosen to normalize K conveniently, and
it will be taken up later when we discuss more mathematically just
what we mean in Eq. (2-14) by a sum over paths.

THE CLASSICAL LIMIT

Before we go on to making the mathematics more complete, we shall
compare this quantum law with the classical rule. At first sight, from
Eq. (2-15) all paths contribute equally, although their phascs vary,
so it is not clear how, in the classical limit, some particular path
becomes most important. The classical approximation, however, cor-
responds to the case that the dimensions, masses, times, etc., are so
large that Sisenormousinrelationto? (= 1.05 X 10~*7erg-sec). Then
the phase of the contribution S/% is some very, very large angle. The
real (or imaginary) part of ¢ is the cosine (or sinc) of this angle. This
is as likely to be plus as minus. Now if we move the path as shown
in Fig. 2-1 by a small amount 8z, small on the classical scale, the change
in & is likewise small on the classical scale, but not when measured in
the tiny unit #. These small changes in path will, generally, make
enormous changes in phase, and our cosine or sine will oscillate exceed-
ingly rapidly between plus and minus values. The total contribution
will then add to zero; for if one path makes a positive contribution,
another infinitesimally close (on a classical scale) makes an equal
negative contribution, so that no net contribution arises.

Therefore, no path really needs to be considered if the neighboring
path has a different action; for the paths in the neighborhood cancel
out the contribution. But for the special path £, for which 8 is an
extremum, a small change in path produces, in the first order at teast,
no change in 8. All the contributions from the paths in this region
are nearly in phase, at phase S, and do not eancel out.  Therefore,
only for paths in the vieinity of & can we get important contributions,
and in the classical limit wo need only consider this particular trajec-
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Fig. 2-1 The classical path 1, £(¢), is that for which a certnin integral, the action 8, is
minimum. If the path is varied by 8z(f), to path 2, the integral suffers no first-order
change. This determines the equation of motion.

In quantum mechanics, the amplitude o go from a to b is the sum of amplitudes for each
interfering alternative path. The amplitude for a given path, ¢5/%, has a phase propor-
tional to the action.

If the action is very large compared to #, neighboring paths such as 3 and 4 have slightly
different actions. Such paths will (because of the smallness of #) have very different
phases. Their contributions will cancel out. Only in the vicinity of the classical path
(1), where the action changes little when the path varics, will neighboring paths, such as
1 and 2, contributc in the same phase and constructively interfere. That is why the
approximation of classical physics—that only the path 2(f) need be considered—is valid
when the action is very large compared to .

tory as being of importance. In this way the classical laws of motion
arise from the quantum laws.

We may note that trajectories which differ from # contribute as
long as the action is still within about % of S,. The classical trajee-
tory is indefinite to this slight extent, and this rule serves as a measure
of the limitations of the precision of the classically defined trajectory.

Next consider the dependence of the phasc on the position of the
end point (z,,4,). If we change the end point a little, this phase changes
a great deal, and K(b,a) changes very rapidly. If by a “smooth

function” we mean one like S, which changes only when changes in-

argument which are appreciable on a classical seale arc made, we note
that K(b,a) is far from smooth, but in this classical approximation
our arguments show that it is of the form

K(b,a) = “smooth function” - et/ S (2-16)

All t.hcsc approximate considerations apply to a situation on a seale
for which classical physics might be expected to work (S>#). But

e p—  ———
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at an atomic level, S may be comparable with #, and then all trajec-
torics must be added in Eq. (2-14) in detail.  No particular trajectory
is of overwhelming importance, and of course Eq. (2-16) is not neces-
sarily a good approximation. To deal with such cases, we shall have
to find out how to carry out such sums as arc implied by Eq. (2-14).

THE SUM OVER PATHS

Analogy with the Riemann Integral. Although the qualitative
idea of a sum of a contribution for cach of the paths is clear, a more
precise mathematical definition of such a sum must be given. The
number of paths is a high order of infinity, and it is not evident what
measure is to be given to the space of paths. It is our purpose in
this section to give such a mathematical dcfinition. This definition
will be found rather cumbersome for actual calculation. In the suc-
ceeding chapters we shall deseribe other and more efficient methods
of computing the sum over all paths. As for this section, it is hoped
that the mathematical difficulty, or rather inclegance, will not distract
the reader from the physical content of the ideas.

We can begin our understanding with a consideration of the ordi-
nary Riemann integral. We could say, very roughly, that the areca
A, under a curve, is the sum of all its ordinates. Better, we could
say that it is proportional to that sum. But to make the idea pre-
cise, we do this: take a subset of all ordinates (e.g., those spaced at
equal intervals A). Adding these ordinates, we obtain

A rs 2 7z (2-17)

where the summation is earried out over the finite set of points x;, as
shown in Fig. 2-2.

The next step is to define A as the limit of this sum as the subset
of points, and thus the subsct of ordinates, becomes more complete
or—beeause a finite set is never any measurable part of the infinite
continuum—we may better say as the subset becomes more represent-
ative of the complete sct. We can pass to the limit in an orderly
manncr by taking continually smaller and smaller values of k. Ifl so
doing, we would obtain a different sum for cach value of k. No lm.nt.
exists. In order to obtain a limit to this process, we must speeify
some normalizing factor which should depend on k. Of course, .for
the Riemann integral, this factor is just & itsclf.  Now the limit exists
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Fig. 2-2 In the definition of the ordinary Riemann intcgrz.ll, a sct of ordinates is.x drawn
from the abscissa to the curve. The ordinates are spnccd a distan ce hapart. The mtegrxfl
{area between the curve and the abscissa) is approximated by & times the sum of the ord;-
nates. This approximation approaches the correct value as b approaches zero.

An anslogous definition can be used for path inlegrals. Th'e measure which goes to zero
in the limit process is the time interval e between discrete peints on the paths.

and we may write the expression

A =1lim[h z 1] (2-18)

Constructing the Sum. We can follow through an analogous
procedure in defining the sum over all paths. First, we choose & sub-
sct of all paths. To do this, we divide the independent variable time
into steps of widthe. This gives us a set of values ¢, spaced a distance
¢ apart between the valucs ¢, and L. At each time {; we select some
special point zi.  We construct a path by connecting all the points so
selected with straight lines. It is possible to define a sum over all

paths constructed in this manner by taking & multiple integral over
all values of x; for 7 between 1 and N — 1, where

Ne=1{, — i
e=8y—
ly = [ Iy = & (2—19)

To = T, Iy =13

The resulting equation ig

Kbay~ff-.. Sz dzidzy - - - dey_, (2-20)

We do not integrate o

: VEI' Zo or zv hecause these are the fixed end
pOlntS Ta and . 'l‘lli SC arc th.

§ equation corresponds formally to Eq. (2-17)-
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In the present case we can obtain & more representative sample of the
complete s!‘t of all possible paths hetween a and b by making e smaller.
However, just as in the ease of the Riemann integral, we cannot pro-
ceed to the limit of Lhis process beeause the limit does not exist. Once
again we must provide some normalizing factor which we expeet will
depend upon e.

Unfortunately, to define such a normalizing factor scems to be a
very difficult problem and we do not know how to do it in general
terms. But we do know how to give the definition for all situations
which so far scem to have practical value. For example, take the
case where the lagrangian is given by Eq. (2-2). The normalizing
factor turns out to be A—¥, where

2mifie\ ¥
A =( - ) (2-21)

We shall sec later (e.g., Sec. 4-1) how this result is obtained. With
this factor the limit exists and we may write

.1 ) dx, d. dzy_
K(b,a) = l.'_.“?,ZU - /e(-/msu.al _Al% - g0 % (2-22)
where
Stbal = [ Lez,z) at (2-23)

is a line integral taken over the trajectory passing through the points
z; with straight scctions in between, as in Fig. 2-3.

Fig. 2-3 The sum over
paths is defined as a limit,

in which at first the path is

gpeceified by giving ounly its
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coordinate r at a large num-

ber of specified times scpa-

rated by very small intervals

e e —

e. The path sum is then an

L

integral over all these spe-

cific coordinates. Then to
achieve the correct measure,
the limit is taken as e
approaches 0.
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It is possible to define the path ina soplcwl.mt more clcgr!.nt manner,
Instead of straight lines between the points 7 and ¢ + 1, '\\.c could use
sections of the classienl orbit.  Then we could say that S is the mini-
mum value of the integral of the Ingmnginn over all _tl.ne paths which
go through the specified points (x;,4.). With this definition no recourse

is made to arbitrary straight lines.

The Path Integral. There are many ways to (!e{ille a subset of all
the paths between @ and b.  The particulm.' definition we have used
here may not be the best for some mathematical purposcs. For cxam-
ple, suppose the lagrangian depends upon the uccclen_ntuqn of z. In
the way we have constructed the path, the velocity is discontinuous
at the various points (z,,5;); that is, the acccleration is infinite at these
points. It is possible that this situation would lead to trouble. How-
ever, in the few such examples with which we have had experience the
substitution

e ;15 s — 222 + 2,.1) (2-24)

has been adequate. There may be other cases where no such substi-
tution is available or adequate, and the present definition of a sum
over all paths is just too awkward to use. Such a situation arises in
ordinary integration in which the Riemann definition, as in Eq. (2-18),
is not adequate and recourse must be had to some other definition,
such as that of the Lebesgue.

The neeessity to redefine the method of integration does not destroy
the concept of integration. So we feel that the possible awkwardness
of the special definition of the sum over all paths [as given in Eq.
(2-22)] may eventually require new definitions to be formulated.
Nevertheless, the concept of the sum over all paths, like the concept
of an ordinary integral, is independent of g special definition and valid
in spite of the failure of such definitions. Thus we shall write the sum
over all paths in a less restrictive notation as

K@a) = /., b el Stbel G (g) (2-25)

which we shall call 2 path integral. The identifying notation in this

expression is the script D. Only rarely shall we return to the form
given in Eq. (2-22),

Problem 2-6 The class of functionals for w

. hich path integrals can
be defined is surprisingly varied. So far we ;

have considered func-
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Fig. 2.4 The path of a relativistic particle
traveling in two dimensions is a zigzag of
straight segmenta. The slope of the seg-
ments is constant in magnitude and differs
only in sign from zig to zag. The amplitude
for a particular path, as well as the kernel to
go from a to 4, depends on the number of
corners Ji along a path, as shown by Eqgs.
(2-26) and (2-27).

tionals such as that given in Eq. (2-15). Here we shall consider quite
a different type. This latter type of functional arises in a one-dimen-
sional relativistic problem, Suppose a particle moving in one dimen-
sion can go only forward or backward at the velocity of light. For
convenicnee, we shall define the units such that the velocity of light,
the mass of the particle, and Planck’s constant are all unity. Then
in the zt planc all trajectories shuttle back and forth with slopes of
+45°% as in Fig. 2-4. The amplitude for such a path can be defined
as follows: Suppose time is divided into small equa] steps of length e.
Suppose reversals of path direction can occur only at the boundaries
of these steps, ie., at ¢ = £, 4 ne, where 2 is an integer. For this
relativistic problem the amplitude to go along such a path is different
from the amplitude defined in Eq. (2-15). The correct definition for
the present case is -

¢ = (GF (2-26)

where R is the number of reversals, or corners, along the path.

As a problem, the reader may use this definition to ealculate the
kernel K(b,a) by adding together the contribution for the paths of one
corner, two corners, ete. Thus determine

K(b,a) = 3 N(R)(ie)* (2-27)
I

where N(R) is the number of paths possible with R corners. It is
best to calculate four separate K’s, namely, the amplitude K, (ba)
of starting at the point a with a positive velocity and coming into the
point b with a positive velocity, the amplitude K,_(b,a) of starting
at the point @ with a negative velocity and coming into the point b
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2-5

grals

with a positive velocity, and the amplitudes K, and X__ defined iy
a similar fashion. e
Next suppose the unit of time is defined as t/mc? If the- tm?c inter-
val is vory long (6 — &> #/me?) and the average velocity is small
[xs — ro K c{ts — )], show that the resulting kernel is approximatcly

the same as that for a free particle [given in Eq. (3-3)], except for g

factor exp [(imc¥/A) (e — b)]- The definition given hcx:e i:or the ampli-
tude, and the resulting kernel, is correct for a relativistic theory of g
free particle moving in one dimension. The result is equivalent to
the Dirac equation for that case.

EVENTS OCCURRING IN SUCCESSION

The Rule for Two Events. In this scction we shall derive an
important law for the composition of amplitudes for events which
occur successively in time.  Suppose £, is some time between £, and ¢,.
Then the action along any path between @ and b can be written as

S[b,a] = S[b,c] + Sle,a] (2-28)

This follows from the definition of the action as an integral in time
and also from the fact that L does not depend on derivatives higher
than the velocity. (Otherwise, we would have to specify values of
velocity and perhaps higher derivatives at point ¢.) Using Eq. (2-25)
to define the kernel, we can write

K(b,a) o= fe(-'u\)s[s,¢)+(imsu.a1 fD;z:(t) (2_29)

It is possible to split any path into two parts. The first part would
have the end points z, and z, = z(t:), and the second part would have
the end points z. and z,, as shown in F ig. 2-5. It is possible to inte-
grate over all paths from a to ¢, then over all paths from ¢ to b, and
finally integrate the result over all possible values of z.. In perform-

ing the first step of this integration S[b,c] is constant. "Thus the result
can be written as

K(ba) = f f ! eimSAK (c,0) Dr() da. (2-30)

where integrations must now be carried out not only over paths

l')etwcen ¢ and b but ul:.m over the variable end point x.. In the next
b&(&p we carry out the integration over all paths between some point
with an arbitrary z, and the point b, All that is left is an integral



