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TORAL ACTIONS ON 4-MANIFOLDS AND THEIR CLASSIFICATIONS

M. HO KIM

ABSTRACT. The existence of a cross-section is proved for some nonorientable
4-manifolds with a T2-action. Two 4-manifolds with a T2-action, which have
the same previously known invariants, are constructed. By using a new homo-
topy invariant, they are proved to be homotopy inequivalent. Finally a stable
diffeomorphism theorem is proved.

1. INTRODUCTION

P. Orlik and F. Raymond showed, in [OR, I}, the following:

Suppose that M is a 4-dimensional closed simply-connected manifold with an
effective T?-action. Then M is an equivariant connected sum of CP?, CP?, 52x
S2 and S*.

In [OR, II], they studied some non-simply-connected manifolds with an ef-
fective T?2-action and proved that, if the manifolds have neither fixed points
nor circle subgroups as stabilizers, then, in “almost all” cases, two manifolds
are diffeomorphic if and only if they are equivariantly diffeomorphic up to an
automorphism of T?.

With the presence of fixed points or circle orbits, the techniques of a topo-
logical classification are quite different. Orlik and Raymond obtained an equi-
variant classification when M has a fixed point, but there were three families
of T2-manifolds, called basic blocks. To obtain a topological classification of
closed orientable 72-manifolds with a fixed point, it was necessary to study
these families of 72-manifolds, which are described in terms of orbit spaces.
For example, each of the manifolds of one family has the orbit space pictured
in Figure 1 (see §2 for a description of this space and [OR, II]). They showed
that

M#k(S? x S2) = (S! x S)#(52 x S2)#k(S? x S?), if mn is even,
= (8! x S}#CP2HCP*#k(S? x S?), if mn is odd,

where k is an integer. Whether or not the addition of the k copies of S2 x S?
could be dropped was left unsettled.
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FIGURE 1. 2-dimensional annulus

P. Pao attacked these unsettled problems with elementary, but clever tech-
niques and eliminated the necessity of stabilization of the above as well as the
other two families in [P]. Furthermore, he proved the following theorem:

Suppose M is a 4-dimensional orientable closed manifold with an effective
T2-action. If M* has a fixed point, then M can be decomposed into a connected
sum of copies of S*, S2x 82, CP?, CP?, S'xS3, L, and L, (n> 2, integer)
(for L, and L}, see §4).

Unfortunately, this connected sum decomposition is not unique. For exam-
ple, CP2#(S2 x §?) = CP?#CP*#CP2. So Pao defined a normal form called a
normal decomposition, of this connected sum decomposition. He proved the fol-
lowing topological classification theorem: Every 4-dimensional orientable closed
manifold with a T?-action has a unique normal decomposition if its orbit space
has a fixed point.

Because the classification of closed orientable 4-manifolds which admit an
effective T2-action is almost complete, it is natural to ask whether there ex-
ist similar results for nonorientable 4-manifolds. Furthermore, nonorientable
4-manifolds have not been studied as extensively as the orientable ones, and
there are not many concrete examples of them in the literature. By studying
nonorientable 4-manifolds with a TZ2-action we are able to give concrete real-
izations by means of orbit spaces and orbit structures. The orbit space is a
2-manifold with boundary to which are attached certain “weights” which en-
able us to reconstruct the 4-manifold. While this is not a cell decomposition, it
behaves like one in that the manifold is divided into nice pieces which we can
topologically identify. We then compute the corresponding attaching maps and
attempt to topologically identify and classify the resulting 4-manifolds.

First, we study the problem of classifying nonorientable 4-dimensional man-
ifolds up to equivariant diffecomorphism in §2. The key to this is the existence
of a cross-section (2.6). This enables us to reconstruct the 4-manifold in certain
basic cases from the weighted orbit space. This is a 2-manifold with boundary
weighted by the orbit invariants of the action.

In §3, we investigate simple 72-manifolds whose orbit spaces are of the fol-
lowing type. (See Figure 2.) They admit cross-sections to the orbit mapping.
The topological identification of these T2-manifolds proves to be very difficult.
We use well-known invariants to distinguish all but a pair of them. The final
equivariantly inequivalent pair cannot be distinguished by any of the previously
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known homotopy type invariants. However, by using a new invariant, due to
S. Kojima (see [KKR]), constructed for the purpose of distinguishing these man-
ifolds, we are able to show they are not homotopy equivalent. In general, this
invariant is hard to compute, but, because we have such a nice description of
our manifolds, we are able to give explicit geometric computations.

In §4, we turn to the problem of topologically identifying the nonorientable
closed TZ-manifolds which admit fixed points, but no Z, x Z, stabilizers on
the boundary of their orbit spaces. We show that, by adding connected sums
of CP2’s, the resulting manifold can be decomposed into a connected sum of
eight basic manifolds and two families of 72-manifolds. We also show that
this decomposition is far from unique.

2. THE EXISTENCE OF A CROSS-SECTION AND THE EQUIVARIANT
CLASSIFICATION THEOREM

Notation and definition. All manifolds are nonorientable 4-dimensional smooth
manifolds, unless specified otherwise. I =[0 1]. S' = the set of all complex
numbers whose absolute value is 1. R = all real numbers. C = all com-
plex number C? = the 2-dimensional complex plane. R? = 2-dimensional
Euclidean space. T2 =S' x S! (2-dimensional torus).

(2.1) Definition. Let f be a function from R? to C2 defined by f(x.y) =
(exp(2mix), exp(2miy)), where exp(2mit) = cos 2nt+1sin 2nt, ¢ a real num-
ber. Given relatively prime integers m, n, we define the image of the straight
line mx + ny =0 in R? under f tobe (m.n).

(2.2) Definition. A T2-action on M is effective if gx = x, forall x in M,
implies g = e (i.e. identity) in T?. In this case, we call M a TZ-manifold.
We denote the quotient space (or orbit space) by M* (i.e. M/T?), and the
natural projection from M to M* is «.

(2.3) Definition. Weighted orbit space. Let M be a T2-manifold. Using the
slice theorem, we find that M* is a 2-dimensional manifold. By assigning the
stabilizer subgroups of 72 to orbits in M* as “weights”, we may speak of M*
as the weighted orbit space (briefly, orbit space). For example,
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is a weighted disk. The weight at each interior point is the identity, while we
have divided up the boundary into three arcs. The three end points of the arcs
correspond to fixed points and the interior of the arcs correspond to orbits whose
stabilizers are (0.1), (1.1), (1.0) (see [OR, I] for more details). According to
[OR, I], the preimage of the dotted line is an invariant S3, the portion of the
disk above the line is an invariant 4-dimensional disk and the portion of the
disk below the line is an invariant disk fiber bundle over S? with a structure
group S! in M . Therefore, we can see that M is CP2.

We begin with some preliminary steps for the proof of a cross-section theo-
rem, which will be crucial in the Equivariant Classification Theorem (2.7).

(2.4) Lemma. Let n: M — M* be as above. Suppose that M*(= I x I) is
given as below:

(m.n)4Z, x(my.n,)

(m.n)xZ, (my.ny)x Z,

More precisely, on the set {(x,0): 0 < x < 1/3}, the stabilizer is (m;.n,).
On the set {(x,0): 1/3 < x < 2/3}, the stabilizer is a Z, subgroup of T?.
On the set {(x,0):2/3 < x < 1}, the stabilizer is (my.nz), at (1/3,0), the
stabilizer is (my.n))xZ,, at (2/3, 0), the stabilizer is (my.ny) x Z, . Otherwise
the stabilizer is trivial. Then m has a cross-section (i.e. there exists a map y such
that moy = 1d). Moreover, any cross-section y on Ix{1}U{0}xITu{l}xI=A4
may be extended to a cross-section over M* . Note that Z, is not contained in
the circle subgroups.

Proof. Since M* has a Z, stabilizer on the boundary, by considering the slice
representation, M is nonorientable. Let M be the orientable double covering
of M. Then, we have an induced 72-action on M which commutes with the
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regular covering transformations (cf. [B, p. 66]) We have the induced Zz-actlon
on M* and the natural projection from M* to M*. In particular, M =1IxI
is given as below:

(ml "1) ("’2'"2)

where 4, = I x {1}. The induced Z,-action on M* acts a rotation by 180
degrees or a reflection. Since M is nonorientable, it must act as a reflection.
Therefore, there exists a cross-section x; from M* to M*. By [OR, I], there
exists a cross-section y, from M* to M and M = L x I where L is a lens
space, whose exact form depends on (m,.n;) and (m,.n;).

Consider the map po x; 0 x; from M* to M, where p is the natural
projection from M to M. Note that p* ot = mop where p* is the natural
projection from M* to M*,and # is the natural projection from M to M*.
Then mopoysoxi=p*oftoyyoy=p*oldy oxi=poy =Idy-..

So po x; oy is a cross-section to the orbit map n. Moreover, given a
cross-section y on A, by [OR, 1], x(4) is a lens space L in M.

Since L is orientable and p: M — M is a double covering, p~!(x(A4)) is
the disjoint union of two lens spaces, i.e. p~'(x(4)) = L x {0} UL x {1}.
We may assume that x,(4;) = L x {0}. Then ;o x(4) = L x {0}. Since
pro(foyioy)=mopoyiox=moldyox =Idy- oy oy isa cross-section
from A4 to M* and 7oy 0 x(A)=4;.

Let y =ftox,ox. Wecanextend ¥ to M* in an obvious way. So poyxzo¥
is an extension of y. 0O

(2.5) Lemma. Let n: M — M* be as above. Suppose M* = I x I is shown as
below:

Z,
More precisely, the stabilizer is Z, on the I x {0}, and elsewhere it is the
identity. Then there exists a cross-section. Moreover, a given cross-section x on
I'x{1}u{0} x TU{1} x I may be extended to M* .

Proof. This is verified by a slight modification of Lemma (2.4). O

Now we are ready to state and prove the existence of a cross-section in more
general cases.
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(2.6) Proposition. Let M be closed. Suppose M* has a fixed point, has no
Zy x Z, stabilizer on the boundary and no finite stabilizer in the interior. Then
there exists a cross-section to the orbit map.

Proof. As in Case 3 of Theorem 1.10 of [OR, I}, consider a closed annular
neighborhood of the boundary components. Denote their union by U*. Note
that, on Y* = M* — U*, n~'(Y*) —» Y* is a TZ’-principal bundle. By the
classification of 2-dimensional manifolds with boundaries, Y* is homotopy
equivalent to \/S! (a wedge product of S!°’s).

Since H*(\VS',ZxZ) = HXY*,ZxZ) =0, n~'(Y*) = Y* x T?. This
we may construct a cross-section over Y* and, by applying Lemmas 1.6, 1.7,
1.8 of [OR, I] and previous lemmas, (2.4, 2.5), we get a global cross-section on
M*. O

(2.7) Theorem (Equivariant Classification Theorem). Let M,, M, be closed
manifolds. Suppose that both M} and My have a fixed point but have no
Z, x Z, stabilizer on the boundaries. Then there exists a weight preserving
diffeomorphism between M} and M; , if and only if there exists an equivariant
diffeomorphism between M, and M, .

Remark. By the slice theorem, if there is an orbit in the interior of an orbit
space whose stabilizer is nontrivial (i.e. other than identity), then the stabilizer
is finite.

We can choose a closed disk in the interior of the orbit space. The preimage of
the closed disk and the action is topologically equivalent to (72, T? x D?/Z,).
Where Z, is the finite cyclic stabilizer subgroup of 72, and the action of Z,
on T2 and D? is given as follows

Axz—o Az, |z] <1, zin D?,
Ax(z1, z2) = (2147, 2247%), (z1,z3) inT?,

with 0 < v < a, a and v are relatively prime, A = exp(2ni/a) and 0 < y; <
a, 0< 9, <a. T?x D?*/Z, means each point ((z;, z3), z) of T? x D? is
identified with (A(z, z;), A~'z). The T?-action on T2 x D?/Z, is on the first
coordinate by natural multiplication.

Proof. The argument for this theorem is really the same as Theorem 1.2 of [OR,
I}). First, if M, and M, are equivariantly diffeomorphic, then this diffeomor-
phism induces a weight preserving map on the orbit spaces.

On the other hand, given such a diffeomorphism h: M} — M;, we shall
construct an equivariant diffecomorphism from M; to M,. Choose closed 2-
disks D about each x whose stabilizer is finite in the interior. They are mapped
by & onto corresponding disks about /(x;). We can assume that x; is in the
interior of D; which is in the interior of M}, and that there is no other point
in D} whose stabilizer is nontrivial. If we let M}, = M} —{J;_, D; and M3, =

o o
M3 —Uy_, h(D}), where Dj is the interior of Dy, then h;: M}, — Mj , the
restriction of A, is a weight preserving diffeomorphism.

Furthermore, as there are no finite stabilizers except the identity in the inte-
rior of M, , any cross-section of the orbit map over {J_, 0D;, can be extended
to all of M}, by Lemma (1.10) of [OR, I]. Thus it is easy to find an equivariant
diffeomorphism H: M, — M, .
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To each M,.;, (1=1, 2), we must attach the (72, T? x Dy/Z, ;) equivari-
antly, where Z, , means Z, acting on D, . We already have a cross section
over each 0D} . We may attach (T2, T? x Dy/Z, ;) up to equivariant diffeo-
morphism in only one way (up to equivariant isotopy) and thereby extend H
to all of M, . This completes the proof. O

3. SPECIAL CASES

Notation and definition. Let R? be 3-dimensional Euclidean space. Let v
denote a vector R*. S2 = {(x,y,z) in R: x2+y?+z2 =1} ={v: |v| =
1}. Since we may identify R? with C x R, S? may be expressed as follows:
S? = {(pexp(2mi0), z): p > 0, p2 + z2 = 1}. RP? is real projective 2-
space. We will use [v] or [(pexp(27mi6), z)] respectively, to denote the point
in RP? which is the image of v or (pexp(2m10), z) in S? under the natural
projection from S2? to RP?. CP? is complex projective 2-space. S* = the
unit 4-sphere and RP* = the real projective 4-space. D? is the unit disk in
R?,ie {(x-y): x2+y* <1} ={rexp(2mi¢): 0<r<1, ¢€R}. S' xS§?/~
is the nontrivial S2 bundle over the circle (i.e. the 3-dimensional nonorientable
handle. Here ~ means every (a, v) in S! x S? is identified with (—a, —v),
aeC.

In this section, we shall first describe some special orbit spaces, then construct
manifolds with T2-actions, whose orbit spaces are the given ones. Then we will
give the topological classification of these manifolds. (In fact, two distinct such
manifolds are not even homotopy equivalent).

Now suppose that we have orbit spaces as shown in Figure 3 where Z, is a
subgroup of order 2 in T2.

Recall from [OR, I] that, as the 72-action is smooth and effective, determi-
nants

my m
my; ny

m; np
ms3 nj

and '

must be 1 or —1.
By using an automorphism of T2 (i.e. by reparametrizing 72), we may as-
sume that M* is one of the following four types, where n, m,n’, m' are

(m:"’z)

(myn) (mx.n])

(m.n)xZ, (myny)x L

z,

by

FIGURE 3
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integers. In type II and type IV, note that m, m’ must be even, because ef-
fectiveness implies (1.m), (—1.m’) cannot contain the subgroup (—1x —1) of
order 2 generated by —1 x —1 € S! x S!.

(0.1) (0.1)
L 1L

(1.0) (l.n) (1.0) (l.m)

0. —1x-1
(1.0)x(-1x1Y (Ln)yx(-1x1) (10)x{-1x1) (0.m)x(-1x-1)

(-1x1)

-1x1
- (1xD) (0.1 v 0.1)
(1.0) (-1.n") (1.0) (-1.m")
(LO)x (-1 x1) (_]-")X(<IXI)(l.O)X(—lX—l) (lom'yx(-1x1)

(-1x1) (-1x-1)

(3.2) Theorem. Let M* be of type 1 or type 11l. Then M is diffeomorphic to
RP? x §? or CP2#RP* according as n is even or odd.

Remark. If M is a nonorientable manifold and X is oriented, then M#X is
diffeomorphic to M#X , where X denotes X with the reverse orientation. So
CP2#RP* is diffeomorphic to CP2#RP* (see [H]).

To prove (3.2), we need the following lemma.
(3.3) Lemma. Let f, be a diffcomorphism from S'x RP? to S'x RP? defined
as follows :

(exp(2mi¢), [(rexp(2m10), 2)])
— (exp(2m1¢), [(rexp2mi(6 + ne), z)]).

Then, if n iseven, f, can be extendedto D>xRP? as a self-diffeomorphism. 0O
Proof. f, may be written in the following way:

cos2nng sin2nng 0O
(exp(2mi1¢), [v]) — | exp(2mig), (— sin2nn¢ cos2nng 0 (1/)) .
0 0 1

Then the map f, from S! to SO(3) defined by

cos2nn¢g sin2mng 0)

exp(2nigp) — (— sin2nn¢ cos2mng O
0 0 1

is a loop in SO(3), so f, represents an element in I1,(SO(3)). Since n is
even, f, is homotopic to the trivial map i.e. there exists a homotopy H, from




4-MANIFOLDS AND THEIR CLASSIFICATIONS 113

S x I to SO(3) such that

Hy(exp(2mig), 1) = fu(exp(2mig)),

1 00
Hy,(exp(2mi¢),0)= [0 1 0] .
001

Define F, from D? x RP? to D? x RP? by

(rexp(2mig), [v]) — (rexp(27i¢), [Hy(exp(2m19), r)[v])

Then since F,(rexp(2mi¢), [-v]) = (rexp(2mid), [Hy(exp(2mig), r)(—v)]) =
F,(rexp(2mi¢), [v]), F, is a well-defined diffeomorphism. This completes the
proof. O

Let us return to (3.2).

Proof of Theorem (3.2). First, we will construct a manifold with a T2-action
whose orbit space is

(0.1)

aon (I.n)

(1.0)x(-1x1)
(Ln)yx(-1x1)

(-1x1)
Consider a T2-action on D? x RP? as follows:

T? x D?> x RP? — D? x RP?,

(exp(2mia), exp(2mi1B))(rexp(2mid), [p exp(2mi16), z])
— (rexp2mi(¢p + B), [pexp2ni(a+np +6), z]).

Then,

(0.1)

(l.n)
(D* xRP*) =
(Ln)yx(-1x1)

(-1x1)
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In particular, when n =0,

0.1)

. 1.0
(D*x RP?) = (o

(10)x(~1x1)

(-1x1)

If we glue two copies of D? x RP? along the boundary by using the map f,
in (3.3), we get a 4-manifold D? x RP* U, D*> x RP?. On the first copy, we
give the action above when n = 0, and on the second copy, we give the action
for general n. Then we can see that f, is an T2-equivariant diffeomorphism
from 8D? x S? to dD?* x S?.

Thus we have an 4-manifold D> x RP?2U;, D?>x RP? with a T2-action whose
orbit space is

(0.1)

(1.0) (l.n)

(Lonyx(-1x1)
(1L0)x{(~Ix1)

(-1x1)

Now we can complete the proof of the theorem as follows.

(i) n is even. Define a map Id*F, from D? x RP? Ujy D? x RP? to D? x
RP? Uy, D* x RP? as follows:

On the first copy of D? x RP?,

(rexp(2mi), [v]) — (rexp(2m19), [v])

on the second copy of D? x RP?,

(rexp(2mig), [v]) — (rexp(271¢), [Hy(exp(2m19), r)(v)]).

Then Id «F, is a well-defined diffeomorphism.

(ii) n is odd. n—1 is even, so we can apply (3.3). Define Id+F,_,, as in
the case (i), from D? x RP?U; D? x RP? to D* x RP? Uy, D* x RP?. Then
Id «F,_, is a well-defined diffeomorphism.

If we put My = D? x RP?Ujy D* x RP?, and M; = D* x RP?U;, D* x RP?,
M,y = S? x RP?, and we see that M, is the nontrivial RP2-fiber bundle over
S2 with the structure group S'. Furthermore, consider the dotted line in M},




4-MANIFOLDS AND THEIR CLASSIFICATIONS

(0.1)

(1.0)
(1.1)
(LI)yx{(-1x1)
(LO)x(-1x1)

(-1x1)

115

The preimage in M, of the line is a T2-invariant S>. If we cut M, along that

S3, we have M, and M;, whose orbit spaces are

(0.1)
Mi =
Mi, =
(1.0) (L)
(L1)x{(-1x1)
(0.1)x(-1x1)
(-1x1)
By adding two copies of
(1.1)
(1.0)

whose total space is a 4-dimensional disk, to M}, and M, , we have

(0.1)
10 (1.1

(L)

(1.0) (1O)x(-1x1) (LI)x(-1x1)

(-1x1)
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In other words, to total spaces M, ; and M, ,, we have to attach 4-dimensional
disks along the boundaries equivariantly.

This procedure implies that M, is a connected sum of two manifolds. By
[OR, I}, a manifold with the first orbit space is diffeomorphic to CP2. For the
second orbit space, we give a T»-action on RP* as follows:

Since

-1 0 0

0 -1 0 O

0O 0 -1 0

0 0 0 -1

commutes with

cos2nf sin2zn6 0 0 0
—sin2n0 cos2znf 0 0 0
0 0 cos2ng sin2ngp O
0 0 —sin2n¢ cos2ngp O
0 0 0 0 1

we can give a Z, x T2-action on S* naturally and also give a 72-action on RP*,
there is only one orbit space up to automorphism of 72. Thus the manifold
whose orbit space is

(1.0) (0.1)

(1.0)x(-1x1) (0.1)yx(=1x-1)

(-1x=1)

is RP*. We conclude that any manifold M of type I is diffeomorphic to
RP*#CP?.

In the same way, by giving appropriate 72-actions on two copies of D? x RP?
and gluing the copies along the boundaries, we can construct a manifold whose
orbit space is of type III as follows:

T? x D* x RP* - D? x RP?,
(exp(2mia), exp(2mifB)) x (rexp(2mi@), [pexp(2mb), z])
— (rexp2ni(¢ + B), [pexp2ni(—a+n'f +6), z]),
T? x D* x RP? — D? x RP?,
(exp(2mia), exp(2miB)) x (rexp(2mie), [pexp(2m10), z])
— (rexp2mi(¢+ B), [pexp2ni(a+0), z]).

The orbit spaces are as follows:




4-MANIFOLDS AND THEIR CLASSIFICATIONS 117

(0.1)

(-1.n")
(D*xRP) " =

(-1x1)/ (-1.n")yx(-1x1)

(0.1)

(D*xRP?) = o

(1.0)x(-1x1)

(-1x1)

Let f! be a self-diffeomorphism of dD? x RP? defined by

(exp(2mig), [pexp(2mi16), z]) — (exp(2mig), [pexp2ni(—0 + n'P), z]).

We can see that the map is T2-equivariant with respect to the above two actions.
Since the set of self-diffeomorphisms of RP? is path-connected, the map, when
n' = 0, is isotopic to identity. So we can apply the procedure in type 1. This
completes the proof. O

Remark. For the above two spaces, by considering double coverings with their
induced T2-actions, we can see that their orbit spaces are

(0.1)

(1.0) (1.0)

(0.1)

and
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(0.1)
(1.0) (L)

(0.1)

respectively.

So RP*#CP? has CP2#CP" as its orientable double covering and S? x RP?
has §2 x S? as its orientable double covering by [OR, I]. Therefore RP*#CP?
is not homotopy equivalent to S2 x RP?.

(3.4) Theorem. Let M* be of type 11 or type IV. Then M is diffeomorphic to
S2x 82/~ or D* x §2/~Ug,D* x §?/~.

In the first case, the equivalence relation ~ means ((pexp(2ni¢), z, v)
is identified with ((—pexp(27mi¢), z), —v). In the second case, ~ means
(rexp(2mi@), v) is identified with (—rexp(2mi¢), —v). The gluing map g
of two D? x §2/~ from 8D? x §?/~ to itself defined by

[(exp(2m19), v)] = [(exp(2719), fo(exp(2mig))(v))],

f> is the map in (3.3), according as m =4/ or m =4/ +2, j integer. As in
(3.2), we need the following lemma.

(3.5) Lemma. Let g, be a self-diffeomorphism from S' x 8%/~ to itself, de-
fined by X
[(exp(2mig), v)] — [(exp(2m1¢), fm(exp(271¢))(v))]

Then, if m = 4j, g can be extended to D? x S?/~ where f,, is the map
in (3.3).

Proof. Recall from (3.3) that the map f,: S! — SO(3) is given by
cos2nm¢  sin2nmae 0)

exp(2migp) — ( —sin2zam¢ cos2nm¢p 0
0 0 1

Hyp: S' x I — SO(3),
Hyu(exp(2mig), 1) = fm(exp(2mig)),

1 00
H,(exp(2mi¢),0)=(0 1 0] .
001

Define a map sz from D? x §2/~ to itself by
[(rexp(2mi¢), v)] — [(rexp(2mip), Hyj(exp(2migp, r))(v))].
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Then, since f},-(exp(quS)) = ﬂ,(exp(qu&)), 62_1' is a well-defined diffeomor-
phism. This completes the proof. DO

Proof of (3.4). As in the proof of (3.2), we shall construct a manifold whose
orbit space is of type II, and get the same results on type IV. Consider T2-actions
on D? x 8%/~ as follows:

T?x D?x 8%/~ — D?>x §%/~,
(exp(2mia), exp(2miB)) x [(rexp(2mid), {pexp(2mi0), z})]
— [(rexp2mi(¢ + B), {pexp2mi(0 + a+ mpB), z})],
T?xD?>x 8%/~ — D*x 8%/ ~,
(exp(2miar), exp(2mif)) x [(rexp(2mi¢), {p exp(2mi16), z})]
— [(rexp2mi(¢p + B), {pexp2mi(6 + a + mp), z})].
Then, its orbit spaces are respectively,

0. (.1

(l.m)
(1.0)

and

—“Ix=1)x(l.m)
(1.0)x (=1 x-1) (=1x-1)

(-1x-1) 1x-1)

It is easy to check that g, in (3.5) is a T2-equivariant (with respect to
the above two actions) self-diffeomorphism of D? x §2/~. So by gluing two
copies of D? x S?/~ along the boundary through g, , we have a 72-manifold
D? x §?/~ U, D? x §2/~

(i) m =4j. Define an Id *(~721 as follows:

D? x 82/ Uy D? x §2/~— D? x §?/~ U, D*x 8/~
on the first copy of D? x §?/~
[(rexp(2mi¢), v)] — [(rexp(2mig), v)]
on the second copy of D? x §?/~
[(rexp(2m@), v] — Gu;([(rexp(2mig) , v))).
Then, Id *62 ; is a well-defined diffeomorphism, since

Gyl(-rexp2mg), —v)] = —Gyyl(rexp2mig), v)].

(i) m =4j + 2. We have a well-defined diffeomorphism Id x 62,- , as in the
case (i), from D? x §2/~Ug, D? x §?/~ to D? x §2/~U,, ,D*x §2/~. Note
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that D? x §2/ ~ UjgD? x S?/ ~= §? x §?/~. Similarly, for type IV, we can
make a construction analogous to type II. This completes the proof. O

Remark. S? x S/~ is an S2-bundle over RP? with the structure group Z; .
The self-diffeomorphism g; is not diffeotopic to the identity (see [KR]).

(3.6) Theorem. RP? x S is not homotopy equivalent to S* x §2/~.

Proof. We want to show that all elements in H?(S?> x RP?, Z;) have zero
square, ie. for every [ in H?*(S? x RP?,Z;), lul = > = 0 in
H*(S? x RP?, Z,), but there is 6 in H?*(S? x S?/ ~, Z;) such that 62 is
not equal to 0. First, by the Kiinneth formula,

H*(RP? x 82, 7Z,)
= H*(RP?, Z,) ® H*(S?, Z) ® H*(RP?, Z,) ® H*(S?, Z)
=(ZyQRZL)® (2, QL) =7, L.

If a is represented by S2 x {yo} where y, is a base point of RP?, and
b is represented by {xo} x RP?, where Xxj is the north pole of S?, then aU
a=a*=bub =b%=0, since we can deform {xo} x RP?, and S? x {yo}
slightly so that there is no self-intersection respectively. Since any element 7 in
H?(RP? x $2, Z,) can be expressed as 1 = ma + nb, where 0 <m, n<1,
7 = (ma + nb)? = m?a? + 2mnab + n*b* = 2mnab = 0, (the coefficient is Z,).
On the other hand,

RP2 %S 52 5 §2/~ 2%, Rp2
[vl-I(x, v)]-[v],

where incl is the inclusion and proj is the natural projection. Then projoincl =
Id,

(incl)*
)

Hy(RP?, Z,) Hy(8? x 8%/ =, Z,) 2, Hy(RP?, Z,)

and (proj), o (incl), = Id. For (incl),(a) in Hy(S? x §?/~, Z,), by Poincaré
duality, there is the corresponding class k in H?(S? x $2/~, Z,), where a in
H>(RP?, Z,) is the nontrivial element. We want to prove k2 is not zero. Since
k2 is the geometric self-intersection number of (incl).(a) (mod 2), we have
only to prove that the self-intersection number of the base space RP? of S? x
82/~ is nonzero (mod 2). We want to deform the base space RP? to get the
self-intersection number. So we have only to consider a tubular neighborhood
of RP? which is diffeomorphic to R? x $2/~, where ~ means ((x, y), v))
is identified with ((—x, —y), —v)). In other words, we have only to count the
self-intersection numbers of RP? in R? x §?/~. The self-intersection number
can be computed as follows: Note that R x §2/~ = R x §2/~ @R x §2/ ~
where @ is the Whitney sum of the vector bundles and ~ in R x S? means
(x, v) is identified with (—x, —v). Since R x S?/~ is the tautological bundle
over RP? which is nontrivial (cf. [MS, p. 38]), if we let R x §2/~ = 74 the
mod 2 self-intersection of the base space RP? is the second Stiefel-Whitney
class of R% x S2/~. The total class is

(7 & 73) = w(r)o(}) = (1 + (7)1 + wi(13))
=14 2w(7;) + 0}(7}).
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So
Wy (R? x 8%/ ~) = wy(7; & 73) = w}(7}).
Since w?(y}) is the nonzero element in H?(RP2,Z,) (cf. [MS, p. 47]),
w,(y3 ®y3) = 1. This implies k2 is not zero (mod 2). O
(3.7) Theorem. S? x S?/x~ is not homotopy equivalent to M, (= D* x S?/~
Ug,D? x 8%/ ~).
To prove (3.7), we need a homotopy invariant which was discovered recently.

In Homotopy invariants of nonorientable 4-manifolds (see [KKR]), the invariant
was defined as follows: Choose an element x in II,(M), and represent it by

a transversally immersed 2-sphere S, . Then fixing an orientation of M (the
orientable double covering of M ), define a function g with values in Z4 by
Z(v(Sy)) + 2# self S, (mod 4).

Here 2°(v(Sx)) is Euler number of the pull-back bundle f*(v(Sx)) with respect
to the orientation induced from M . Here f is a transversally immersed map
from S? to M, v(Sy) is a normal bundle over Sy in M and # self S, means
the self-intersection cardinal number Sy in M .

Now we are ready to state the main theorem in that paper without proof.

Theorem. Suppose that f is a homotopy equivalence from M to N. Then
am(x) = gn(fi(x)), for all x in TI,(M), with respect to relevant orientations of
the orientable double covers M and N .

Proof of (3.7). Suppose there exists a homotopy equivalence f from §2? x.S2/~
to M, . Then we have

$2x 82/~ S M,

m, i o3

(0.1) (0.1)

(1.0) (1.0) “O)O (2
(1.0)x (-1 x~1) (LO)x (-1 x-1) (10X (1 x-1) (1.2)x (-1 x-1)

(-1x-1) (-1x-1)

where 7, m, are the natural projections.

Consider the orientable double covering S2xS? with the induced 72-actions.
Then we have orbit spaces as shown in Figure 4 corresponding to those shown
in Figure 5 respectively. Choose an element x in II,(S? x §2/~) (the second
homotopy group of S2 x 5§2/~) which corresponds to the preimage of the arc
A (ie. m7'(A)) in S? x §?/~. Then gu(x)=0+0=0 (mod 4).

Next we want to show that f.(x) in II;(M;) is represented by 75 Y(B) of
the arc B in Figure 6 let

U ={(x,»):x2+y*<1,x<1/2}

and
Upy={(x,y): x*+y*<1,x>-1/2}.
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(0.1) (0.1)

(1.0) (1.0) and  (1.0) (1.2)
(0.1) (0.1)
FIGURE 4
A
o, won 8
(1.0) (1.0) and (1.0) (1.2)
(1LO)x(-1x-1) (1.0)x(-1x~1) (LO)x(-1x-1) (12)x(-1x-1)
(-1x-1) (-1x-1)
FIGURE 5
¥
(0.1)
(1.0) (1.2)

(1LO)x(=1x-1) (12)x (-1 x-1)

(-1x-1)
FIGURE 6
Note that 7;'(U)) = n;'(Uy) = D? x S2/~ where D? = the interior of D2

and 7;'(U; N U,) is homotopy equivalent to S' x §2/~ from (3.4). By the
Mayer-Vietoris sequence, we have

Hy(n5'(U))) & Ha(n; ' (Un)) — Hy(My) 25 Hy(S' x 87/ =)
— Hy(n;'(U))) ® Hy (75" (Uz)) — H{(M;) — 0

where d, is the boundary homomorphism. Since 7n;'(U,) and n;'(U,) have
the same homotopy type as RP? and the fundamental group of S! x §2/~ is
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Z , we obtain the exact sequence
0— Hy(My) > Z — Z, ®Zy —» Hi (M) = 0.

Since H,(M;) =Z, H)(M;) is a subgroup of Z and nonzero, so H(M,) =Z.
The generator of H;(S' x S2/~) is represented by n;'(P). By the definition
of du, ny 1(B) represents the generator of H,(M,). By the Hurewicz homo-
morphisms and their naturality, i.e.

I5(S? x §?/~) —— Hy($?x S?/~) =17

f-lg f.le

I (M) —_— Hy(M3) =Z

fu(x) in TIy(M,) is represented by 7;'(B), and n;(B) correspondsto 7;(B)
in S% x §%, where B is an arc as shown below:

(0.1) /B

(1.2)
(1.0)

(0.1)

According to [OR, 1], the Euler number of the normal bundle of 75 ! (E) is the
determinant | 9| with a sign. We have 2 (v(Sy,(x))) = +2 or —2. Since there
is no self-intersection point in M as we can see

(0.1)

(1.0)

(LO)x (=1 x-1) (1.2) x (=1 x -1}
(=1x-1)

we have g, (fi(x)) =2 (mod 4). We have a contradiction. We can conclude
that those are not homotopy equivalent. 0O
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4. STABLE DIFFEOMORPHISM THEOREM

In this section, we are going to prove the stable diffecomorphism theorem (4.4).
If M is closed, nonorientable and admits a toral action with fixed points and
no Z, x Z, stabilizer, then M , after blowing up with CP2, s, is diffeomorphic
to a connected sum of 8 basic T2-manifolds and 2 families of T2-manifolds.
To prove the theorem, we need the following lemma:

(4.1) Lemma. Suppose M* is given as below (only one Z, component):

Then M#nCP? can be expressed as a connected sum of S?xS?, CP2, RP*xS?,
Where n is some integer.

Proof. By reparametrizing T2, we may assume that M* is one of the following
types:

J/“’O) % (1.0) w (1.0) g~
(0.1) (0.1) (0.1)
(x1.1) (%l.n) (xl.m)
(l.1)x{(-1x1) (tlon)x(-1x-1) (tl.m)x(-1x-1)

(-1x1) (-1x-1) (Ix-1)

Recall that » and m must be even and odd in & and % respectively.
As in §2, we break the orbit space of each type into two pieces and investigate
them as follows:

(i) .7 type (1.0) J

(0.1)

(x1.1)

(xl.1)

(-1x1)

where A, and A, are 4-manifolds.
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Then, by applying the same methods as in (3.2), M is diffeomorphic to a
manifold 4; (i =1 or 2) with orbit spaces

(1.0)

(0.1)
~ %
(A)) =
(£1.1)
(1) x{-1x1)
(-1x1)
(1.0)
(0.1)
(A)) =
(£1.0)
(£1.0)x(-1x1)
-1x1)

according as / is odd or even respectively. We can reduce the number of
fixed points i.e. we can express 4; as a connected sum of a simply-connected
manifold and some manifold K whose number of fixed points is less than that
of A; as shown below

(1.0) (0.1) (1.0)

(%11
(0.1) (+1.0) “0’
(AT = :
(£1.1)

(-Ix1)

(1.0) o

(£1.0) :
(0. (0.1)
(+|0) (I'+I)

(-1x1) (£1.0) (~-1x1)
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If we get type &/ , then we apply the above method again. Suppose K; is of
type & or % . By adding

(0.1) (tl.m-1) (0.1)
(xl.n-1)

(£l.n) (£l.m)

to

(1.0) (1.0)

(0.1) . .1
and
(tl.n) (l.m)

(-1x-1) (1x-1)

respectively, we have

(0. 1)
0.1)
(£1on-1) (xl. m-1)
(%l.n) (*l.m)

(-1 x-1) (Ix-1)

Then (-1 x —1) is contained in (l.n — 1), and (I x —1) is contained in
(1.m —1). By an automorphism of 72, we get type & and apply the above
argument until we get less than three fixed points. By (3.3) and (3.5), we obtain
the desired result. O

(4.2) Lemma. Suppose M* is given as follows:
(1.0)

(0.1)
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Then M is diffeomorphic to S* x S*#(S! x S3/ ~) where ~ means (a, (x,y,
z,w)) is identified with (—-a, (x,y, z, —w)).
Proof. M* can be obtained as follows: Consider N* as shown below:

(1.0) (0.1)

Note that N = S? x S2. Delete 4* and B* whose preimage are 4-dimensional
disks and attach 9A4* and 9B* by using an orientation preserving diffeomor-
phism. So, in the total spaces, two boundaries of C are S3. If we identify S3
with the other S by using an orientation preserving map f from-S3 to S3,
we get M. Thus M = S% x S?#(S? x S1/~).

(4.3) Lemma. Suppose we have the following orbit space:

(p.q)

/4
(1.0)

where neither p nor q are +1. By adding some number of CP?’s or CP?’s to
the total space, we can make the resulting orbit space as follows:

(p.q)

"

(0.1)

(m,.nl)

(1.0)
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such that, for some min;,

m; n;
p q
Proof. This can be proved easily by using the Euclidean algorithm. O

=1 or -1

Remark. Suppose M* is as shown below:

(p.q)

(1.0)
(0.1)

Then, by using (4.3), we get

(p.q)

(1.0)

(m.n)

such that |2 7| = +1. We decompose this into two orbit spaces

z, z,

(1.0) (p-a) tr-4) 0.0

(m.n)
(m.n)

so that each of them has only one Z, component.

We are ready to prove the stable diffeomorphism theorem.
(4.4) Theorem. Suppose M* has no Z, x Z, stabilizer on each of the boundary
and has a fixed point. Then M#nCP2 can be expressed as a connected sum of
S2x 8%, CP?, RP*x S?, S'x83/~, L,, L., S'xS3, K, where n is some
positive integer, L, , L, are 4-manifolds whose orbit spaces are (respectively)
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(0.1)
(10) (1) (10)
L= (L) =

(1.0) (0.1)

(see [P] for more details).
Proof. Since M* has a fixed point, M* is a 2-dimensional manifold with
nonempty boundary. The proof follows from Theorem VI.1 of [P]and (2.7). O

Remark.
(0.1)
(1.0) (0.1)

(1.0)
(1.0) #

1. -1 x-1
(LOyx(-1x-1) (1.0)x (=1 x~1)

(~1x-1) (L.1)
(1.1) (0.1)

(10) (1.0)

(1L.0)x (=1 x-1) (1LO)x(=1x-1)

(~=1x-1)

(LD (0.1)

(10) (1.0)
(1.0)
(LO)x (=1 x~-1)
(LO)x(=1x-1)

(=1x-1)
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By reparametrizing T2, we get
0.1) (0.1)

(10) a0 gy (10)

(1.0)x{(-1x-1) (1.0)x{(-1x-1)
(-1x-1)

Thus S? x $2/~ #CP2 = RP? x S?#CP?, even if S? x S%/~ is not homotopy
equivalent to RP? x S2. In the same way, we can obtain M,#CP? = RP? x
S2#CP? .
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