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Abstract. Smooth actions of the 2-dimensional torus group SO(2)xSO(2) on 
smooth, closed, orientable 4-manifolds are studied. A cross-sectioning theorem for 
actions without finite nontrivial isotropy groups and with either fixed points or orbits 
with isotropy group isomorphic to SO(2) yields an equivariant classification for these 
cases. This classification is made numerically specific in terms of orbit invariants. A 
topological classification is obtained for actions on simply connected 4-manifolds. It 
is shown that such a manifold is an equivariant connected sum of copies of complex 
projective space CP2, -cp2 (reversed orientation), S2 x S2 and the other oriented 
S2 bundle over S2. The latter is diffeomorphic (but not always equivariantly 
diffeomorphic) to CP2 # -CP2. The connected sum decomposition is not unique. 
Topological actions on topological manifolds are shown to reduce to the smooth case. 
In an appendix certain results are extended to torus actions on orientable 4- 
dimensional cohomology manifolds. 

Introduction. In this article we begin the study of actions of the two-dimensional 
torus group SO(2) x SO(2) on 4-manifolds. Our chief motivation for this study is 
that it enables one to construct, in a systematic way, a large number of nicely 
behaved 4-manifolds. These 4-manifolds can be described in terms of certain 
weighted 2-manifolds (orbit spaces with their orbit structures). To write down 
all possible actions of the torus on 4-manifolds is not too difficult but it is 
entirely a different matter to characterize topologically the 4-manifold from the 
orbit data. 

We may think of this study as two separate problems. By the equivariant problem 
we mean being able to write down enough data (orbit space, orbit types, etc.) so 
that when two sets of data arising from two actions (not necessarily on the same 
manifold) are examined, one can decide whether or not there is a homeomorphism 
between the two manifolds which is equivariant with respect to both actions. This 
problem is considerably easier than the topological classification problem. 

By topological classification we mean the topological identification and classi- 
fication of the manifolds arising in terms of their data used for deciding the first 
problem. 
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As an illustration of this approach the first problem for actions of S0(2) on 3- 
dimensional manifolds is solved in [8]. The second problem is also solved there when 
the action has fixed points. In terms of the orbit data it is shown when the manifold 
is compact (and closed) that it is a certain equivariant connected sum of lens 
spaces (including the sphere and S2 xS') and in the nonorientable case some 
additional sums of nonorientable handles and Rp2 x S"'s. In [5], this topological 
classification is given for the closed case without fixed points (" Seifert manifolds"). 
Here, except for certain exceptional cases, these 3-manifolds are K(ir, 1)'s, have a 
unique SO(2)-action, and a manifold is determined by its fundamental group 
which, in turn, is calculated from orbit information. 

Both of these problems are solved here for torus actions on closed oriented simply 
connected 4-manifolds. We prove that the 4-manifold is a specific equivariant 
connected sum of the 4-sphere, oriented complex projective spaces, and handles 
(S2 x S2's) (?5). In addition, the equivariant problem is solved if finite stability 
groups other than the identity are absent (??1, 4 and appendix). 

Crucial to the solution of these problems and to this entire paper is the cross- 
sectioning theorem proved in ?1. In ?2 topological torus actions on lens spaces are 
classified. ?3 studies the (topological) normal bundles of certain embedded 2-spheres 
in terms of orbit data. In particular, the 4-manifold is constructible by certain 
"6plumbing" operations along these embedded 2-spheres and other "glueing" 
operations. 

In ?4 we give a precise form (in terms of numerical invariants) of our solution to 
the equivariant classification problem. 

We have phrased most of this paper in the context of smooth actions on smooth 
manifolds. This is really only a convenience since all topological actions are 
topologically equivalent to smooth ones and smooth classification is equivalent to 
topological classification in this context. We have relegated to an appendix the 
proof of some of these facts. The arguments in the topological or cohomological 
case are all harder than in the smooth case since one is trying to obtain the same 
conclusions from much weaker hypotheses. In fact, in the appendix we treat toral 
actions on sufficiently general 4-dimensional cohomology manifolds to include all 
topological manifolds and certain types of singular complex varieties, e.g. Brieskorn 
varieties, which admit a toral action. This is done with really not much extra pain 
and is very natural in the context in which we are working. 

Illustrations and examples that go beyond our goal in ?5 are given in the text. In 
particular, one finds in (5.8) a simple argument that CP2 p(-C2) # Cp2 is 
diffeomorphic to (S2 x S2) # CP2, see [3]. 

Another example (5.10) shows that a toral action on Cp2#(-Cp2) may 
possess no equivariant 3-sphere which realizes the splitting into connected 
sums. In the appendix, an algebraic action of the torus is described on a singular 
Brieskorn variety which topologically, in this case, is a cone over a lens 
space. 
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In sequels we intend to complete the equivariant problem and continue the 
topological classification. In particular, we have a stable topological classification 
in the closed oriented nonsimply connected case. Very precise information is also 
available when all orbits are two dimensional and the genus of the orbit space is 
greater than or equal to 1. 

Added in proof. We would like to call attention to G. E. Bredon, On a certain 
class of transformation groups, Michigan Math. J. 9 (1962), 385-393. It contains, 
as a special case, the analysis of the orbit structure and a local cross-sectioning 
theorem in the neighborhood of a fixed point for toral actions on an integral 
4-cm. Since we wished to obtain very specific global results, the overlap with ?1 
is slight. 

1. Orbit structure. In ??1 through 5 we will be mainly concerned with smooth 
actions of the torus G= T2 = SO(2) x SO(2) on closed smooth 4-manifolds. How- 
ever, most of our results are valid in the topological category. The needed changes 
in the arguments together with an exploration of results in the cohomological 
framework with simple examples of actions on singular complex algebraic varieties 
will be discussed in the appendix. Henceforth, unless specified otherwise, we shall 
tacitly assume that G is acting smoothly on a smooth manifold. 

1.1. PROPOSITION. If G acts effectively on a cohomology manifold X, then there is 
a principal orbit. 

Let us parametrize G by (p, 0) where 0? _p < 2T,f 0 <0< 2X. Define the subgroup 
G(m, n)={(p, 0): mp +?n0=0, (m, n)= 1}. Note that G(m, n) is isomorphic to 
SO(2). 

The subgroups G(m, n) and G(m', n') together generate the homology of 
G=T 2if and only if Im m, I = ? 1. However they generate G as a group provided 

In nw 1 ? 

1.2. PROPOSITION. If M is an orientable 4-manifold then MIG(m, n) is a 3- 
manifold with boundary. 

1.3. PROPOSITION. If M is closed and orientable then the orbit space MIG = M* is 
a compact 2-manifold. 

Both propositions follow immediately from the (differentiable) slice theorem 
[1, Chapter 8]. These propositions are considerably more difficult in the cohomo- 
logical case. 

1.4. The table below lists the possible isotropy groups together with the slice, the 
action of the isotropy group on the slice and the image of the orbit on M*. Again 
recall that M is orientable. 

The details follow easily. The fact that an effective action around a fixed point 
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isotropy action of isotropy 
group orbit slice group on slice image of orbit on M* 

x e TD2 rotation isolated interior point 

Zn x Z T2 D2 rotation isolated interior point 

need (n, m) =1 

G(m, n) Si D3 rotation boundary point 

G(m, n) x Zp not possible for p > 2 since the orbit would be 1-dimensional with slice D3, 
but S1 x Zp,? SO(3) 

G fixed D4 rotation in two planes isolated boundary point 
point by G(ml, nl) and G(ml, n1), G(m2, n2) 

G(m2, n2) need IM n 1 + 1 

requires I M 
M21= + 1 will be seen in ?2 from a different point of view. In the 

appendix the general nonmanifold case, ni n2 will be considered. 
DEFINITION. An orbit with nontrivial finite stability group will be called an E- 

orbit. The totality of E-orbits is denoted by E. An orbit whose stability group is 
isomorphic to the circle group will be called a C-orbit and the totality of C-orbits 
is denoted by C. The totality of fixed points is denoted by F. 

1.5. Next we turn our attention to the problem of finding a cross-section to the 
orbit map. 

Let X be a compact Hausdorff space with an effective G action. Assume that the 
orbit space is X* = Ix I and that there are only two types of orbits. The points on 
the arc 0 x I have stability group G(m, n) with relatively prime (m, n) and all other 
points correspond to principal orbits, hence, by (1.1) to T2. 

1.6. LEMMA. The orbit map IT: X -> X* has a cross-section. Moreover, any 
cross-section given on the arc A = (I x 1) u (1 x I) u (I x 0) may be extended to a 
cross-section over all of X*. 

Proof. For the given (m, n) we can find (p, q) such that iq n 1. Then the action 
of G(p, q) is free on X. Let Y= X/G(p, q). The orbit map I': X -> Y is a principal 

G(p, q) bundle. The action of G(m, n) on Y is semifree and the fixed points of 
it: Y -> X* map onto 0 x I. The action of G(m, n) over X* - (O x I) is free and it is 

a product action. Any cross-section to this action can be trivially extended to all of 
X*. Thus Y is homeomorphnic to X* x S1 with each circle 0 x t x S1 collapsed to a 
point, which is a 3-cell. The action of G(m, n) is just rotation about the axis (O x I). 
Now the free action of G(p, q) over Y must be trivial and hence X= Yx S1, with a 
cross-section. We combine the two cross-sections X* -? Y and Y-? X to obtain 
the desired cross-section to 7T. 

Now suppose that a cross-section is already given on A. This gives a section over 
A for the orbit mapI7T. Since H2(X*_O x I, A-(O x O U O x 1); Z) = O we can extend 
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over X* any cross-section X": A -> Y. Since H2(X*, A; Z) = 0 we can lift the 
section X" to X to extend any lift over x"(A). 

1.7. LEMMA. Suppose that IT: X -> X* is the orbit map of a G-action on a compact 
Hausdorff space and assume that X* = S1 x I, where S1 x 0 corresponds to orbits 
with isotropy group G(m, n) with (m, n)= 1 and all other points to principal orbits. 
Then the map 7T has a cross-section. Moreover any cross-section on S1 x 1 may be 
extended to a cross-section over X*. 

The proof is analogous to that of (1.6) and we shall omit it. The total space is 
X= D2 x S x S' and the action is rotation of the first and second factors. 

1.8. LEMMA. Let IT: X -X* as above and assume that X* = [-1, I] x I, where 
-1, 0) x 0 has stability group G(m, n), (0, 1] x 0 has stability group G(p, q) such that 

I n I = ? 1, 0 x 0 has stability group G and all other points correspond to principal 
orbits. Then there is a cross-section to this action. Moreover any cross-section on the 
arc A =(- 1 x I) u (1 x 1) may be extended to a cross-section over X*. 

Proof. Let Y= X-fixed point. The orbit space of this invariant locally compact 
subspace is Y*= X* -(0 x 0). A section over Y* n ([- 1, 0] x I) can be given 
according to (1.6); in fact, the section may be required to extend a given section on 
A. The restriction of this section to [0, 1] x I may be extended to all of [0, I].x I 
-(0x 0) by a slight modification of (1.6). This section extends trivially to all 
of X*. 

1.9. REMARK. We could actually refine the above lemma to apply when 
a section is specified on all of AX* or on any finite set of disjoint intervals of 
AX*. 

Now assume that 7T: X -- X* is as above and X* is a compact 2-manifold with 
nonempty boundary. Let all interior points of X* correspond to principal orbits. 
On AX* we assume that there are two types of orbits only. A point on DX* may be 
the image of a C-orbit or it may be a fixed point. In the former case a component 
consists of either a whole circle or an open interval whose end points are fixed 
points. In the latter case we assume that a fixed point is isolated and the two open 
intervals with stability groups G(m1, n1) and G(m2, n2) that it separates have 

IMl M2|- + 1 
I n, n2- 

1.10. THEOREM. X is a closed orientable 4-manifold and the orbit map has a 
cross-section. 

Proof. Consider the following possibilities: 
Case 1. X* is a disc, A9X* has no fixed points. Then (1.7) applies. 
Case 2. X* is a disc and AX* has fixed points. Then we may assume that the 

number of fixed points is t? 2 (by the condition I mil'I = + 1). 



536 PETER ORLIK AND FRANK RAYMOND [December 

4 t ,_ 1 sD* XG(M2, n2) 

| s 8 ~~~~~~~~~D*2 p7 

+1* *I I 
\ ~ ~~~~~~~~~ \ t.*- G(ml, ni) 

\ +(mf, ~~~~~~~~nt) 

Thus X* looks as on the figure. We subdivide X* along the dotted lines. Each DM* 
is just as in (1.8). 

There is a section to the orbit map over Y* since Y* is a 2-cell. In fact more is 
true. We may choose a finite set of 2-cells El*, . .., E. interior to Y* and specify 
cross-sections over them and extend to a cross-section over Y*, since 

H2( Y*, E,8u* E*u ;Z 0Z) = O. 

Similarly, we may remove the interiors of Ei* from Y* and specify cross-sections 
over OEi*. These can be extended to a cross-section over Y* -(Eo* u**uEm*) 
since 

H2( Y* -(Eo * uEmo*), aE* u a Em; Z (@ Z) = . 

The cross-section over Y* can be extended to D* by (1.8), then D*, ... , Dt* 

by (1.9). 
Note that a by-product of this discussion is that we can construct a cross- 

section to the annular region X*- Y?* extending any given cross-section on a Y*. 

Case 3. If X* is the general 2-manifold of the theorem, consider closed annular 

neighborhoods of the boundary components. Let their union be denoted U*. The 

action over Y* = X*- U?* is trivial since H2( Y*; Z 03 Z) = O, thus we may choose 

a section over Y*. We extend this section to all of X* either by Case 2 or (1.7). 
The fact that X is an orientable closed 4-manifold follows from (1.7) away from 

the fixed points. In a neighborhood of a fixed point we look at the inverse image of 

a small arc going from an orbit of type G(mi - 1, ni -1) to one of type G(mi, ni) with 
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interior orbits being principal orbits. The inverse image of this arc is an invariant 
3-sphere. This can be seen directly or the reader may consult ?2. The 2-cell, in the 
orbit space, cut off by the arc has as inverse image the equivariant cone over this 
invariant 3-sphere. 

1.11. REMARK. It is not necessary to assume that X and X* are compact. The 
above argument is valid if X is a locally compact Hausdorff space and X* is either 
a 2-manifold with nonempty boundary or an open 2-manifold. If the orbit structure 
is as in (1.10) then the resulting space X is a 4-manifold without boundary. 

1.12. On the other hand, let us start with a G-action on a 4-manifold without 
boundary subject to the conditions: 

(i) there are no nontrivial finite isotropy groups, 
(ii) if all orbits are principal, then the bundle is trivial. 
If F u C= 0 then the above conditions imply that the manifold is a product. 
If F u C# X then we obtain the following result: 

THEOREM. The orbit space is a 2-manifold with boundary, with "weights" on the 
boundary corresponding to the isotropy subgroups. The action has a cross-section. 
Therefore two such actions are equivalent if and only if there exists a "weight 
preserving" homeomorphism of the orbit spaces. 

In the smooth case the theorem follows by utilizing (1.3) and (1.4) (compactness 
is not necessary). In the topological case and the general cohomological case the 
argument is completed in the appendix. The oriented, smooth and closed version of 
the theorem is stated in a more precise and numerical form in (4.4). 

Finally we should point out to the reader that if the action of (1.12) is smooth, then 
the orbit map is smooth and we may choose a smooth cross-section and perform all 
of the above constructions of ??(1.6)-(1 .10), provided we smooth corners as needed. 

2. Actions of G on 3-manifolds. In this section we give an explicit description of 
the topological actions of G on orientable 3-manifolds, N, with orbit space 
NIG=N*. 

By (1.1) there is a 2-dimensional orbit and it is easily seen that N* is a 1-manifold. 
It is also easy to see that the only possible nontrivial stability group is a circle 

group and the image of an orbit with nontrivial stability group is a boundary 
point of N*. 

2.1. If N* is a circle, then all points of N* correspond to principal orbits. Thus N is 
a Ta bundle over S1. Such principal bundles are classified up to bundle equivalence by 

[S1; K(Z, 2) x K(Z, 2)] = H2(S'; Z 33 Z) = 0. 

Thus N=N* x T2=S' x T2 is a 3-torus and the action is the standard action. 
2.2. N* is a closed interval with both boundary points corresponding to principal 

orbits. Clearly N=N* x T2 with standard action and N* is a cross-section to the 
orbit map. 
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2.3. N* is a closed interval with one boundary point corresponding to a prin- 
cipal orbit and the other has stability group G(m, n). Since we have a cross-section 

X: N* -- N, where N is I x T2 with 0 x T2 collapsed to the orbit space of the action 
of G(m, n) on 0 x T2. This is a solid torus, N= D2 x S1. The orientation is obtained 
from the orientation of I and of G = T2, collapsing each 0 x S1 x y to 0 x 0 x y for all 
y E S1. We parametrize Ix S' x S' by (p, o, 3, O<p 1, 0< a<2r, O</<27r. The 
linear action 

G x N N, 

(p, 0) x (p, a/ 9- (p, a +pp +qO, /3+mp +nO) 

is effective if and only if I P m-?1. 
Since there is a cross-section to the orbit map, the action is either equivalent to 

this linear action or to the one reversing the orientation of X(N*): 

(,, 0) x (p, a, /3) -- (1 -p, a+p9,+qO, /3+m9p+nO). 

Now suppose we have another action on N 

(p, a, O) -> (p, a+pcp+qO, /3+ imi9+h0) 

and there is an equivariant homeomorphism g: N - N covering the identity map 
of the cross-section g*. X(N*) -- X(N*), then we can write 

g: (p, a, X) -- (p, xa +y,A wa +z3). 

It follows that w = 0 and (mil, n) = z(m, n), z= + 1. Furthermore if we let 

p m 

q n 
then 

P m pP 
X = E = SSZ, Y e - n n q q 

and g is orientation preserving exactly when I x y 1. 
In particular {(-m,- n), (p, q)} and {(m, n), (-p, -q)} represent reversed 

orientation to {(m, n), (p, q)}, while {(-m, -n), (-p, -q)} represents the same. 
2.4. If N* is an open interval, then N= N* x T2 with the standard action. If 

N* is a half-closed interval, then the discussions of (2.2) and (2.3) apply. 
2.5. N* is a closed interval with both boundary points corresponding to non- 

principal orbits whose stability groups are G(m, n) and G(m', n'). 
Consider a point Q on N* 

(m, n) Q (m',n') 

representing a principal orbit which separates N into two solid tori, V and V'. 
Then N is S3, S2 x Sl or a lens space. 

Choose a cross-section X: N* - N to the orbit map. An orientation of N 
determines in a natural way an orientation on N*. The orientation induced by X 
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on X(N*) together with the orientation of the orbits determines the given orientation 
of N. There exist equivariant homeomorphisms k and k' of D2 x SI to V and V', 

k: (p, a, O) -- [s(na +q/), s( - ma +p13)] X(p/2), 
k: (p, a, /)O-> [E '(n'a -q'), E'(-m'a+p'f) ] x(l -p/2) 

(where s = ml , s'= II m'l and denotes the group operation in N) so that 
k'IaV' and kljV are equivariantly homeomorphic (or diffeomorphic). Now k is 
equivariant with respect to the linear action 

(p, a, O) -* (p, a+pp+q0, /+ mp +nG) 

on Dx S1 while k' is equivariant with respect to 

(p, a, ) (p, a+p'p+q'O, /3+m'p+n'6) 
on D2x S. 

The orientation of N determines orientations of D2 x SI by k-1 and k'-'. As in 
(2.3) the orientation of D2 x S' determined by k-1 is in turn determined by 
det k 1=det k -= 

n - =q C. If E 1 the induced orientation on D2 x S' agrees with 
the standard one. 

If E= -1 the induced orientation on D2 x S' is opposite to the standard one. In 
this case we precede k by an orientation reversing homeomorphism 

g:D2xSl'>D2xSl' g:(p,a,/3)->(p, -a, ( ) 

changing {v m} into { I}- f= {- m}. The composition k o g preserves the standard 
orientation of D2 x S1 and it is equivariant with respect to {P n} where Iq f ' 1. 

Thus we may assume that given the action of G on the oriented N, there exists 
an orientation preserving equivariant homeomorphism of D2 x S' = V into N such 
that the standard action on V 

(p, 0) x (p, a, / (p, a +pp +qO, 3 + mw + nO) 
hase= |P nm|=l1. 

A similar argument shows that the orientation on the second solid torus, 
V'= D2 xS' is determined by the value -e' and we may assume E' = I Mt=- 

to give the usual orientation on V'. 
The two solid tori V and V' are sewn together equivariantly by an orientation 

reversing homeomorphism h along their boundaries as follows: 

(1, a, /3) (1, a+pp+qO, P+mp+nO) 

{h {h 

(1, ua+ vP, wa+ t/3 - > (1, ua+ v/+p'pp+q'O, wa+ t/+m'q+n'O) 

Therefore we must have 

u(a+pp+q0)+v(/3+mq+n0) = ua+v/3+p'p+q'6, 

w(a+pp+q0)+t(/3+mp+n0) = wa+t/3+m'cp+n'0. 
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Thus we obtain 
m p p' 

U = 
nq 

V n qq 

ml m p m' 
W =6 I t 6 0 

w=e n' n , t q n 

where e=P ml . Let P'= m . Then we find that I1 fl 
From the above we may assume that e= 1, 6'= -1 and therefore h is in fact 

orientation reversing. 
In order to decide what the manifold N is, note that in V' the curve 

{(1, a, /) I wa + t/ = 0} is null homotopic. 
Thus when we sew D2 x SI to D2 x SI along their boundaries to form 

N= V Uh V', we obtain the oriented lens space L(r, s), where 

m m p m'l 

Next we shall drop the assumption e= P l =m1 but, of course, retain e e'=-1. 
Recall that the lens space L(r, s) satisfies the identities 

L(r, s) = L(-r, -s) = L(-r, s) = L(r, -s) = L(r, r-s), 

where - means reversed orientation. 
For fixed (mi, n), (m', n') the choice of (-p, -q) instead of (p, q) changes 6 to -1, 

hence we need 6'=1 and may choose (-p', -q'). We see from the above that we 
obtain L(w, t) =L(r, s). But since in this case k and k' were also orientation reversing 
we conclude that again N=L(r, s), independently of the sign (p, q) resp. (-p, -q). 

Finally we want to show that N is also independent of (p, q), (p', q'). This is 
already true of r = I .m m Since N is independent of , let us assume that e= 1. From 
pn'-qm'=s, pn-qm =e=1, we obtain for r=#0, 1, 

p = (m' -sm)/r, q = (n'-sn)/r. 

Thus ms_ m' mod r and ns n' mod r determine s uniquely in the interval 

- r I < s < I r 1. It is easy to show that the two congruences above determine the same 
s. They are in fact consequences of each other. 

As a conclusion we have that the action, whose oriented orbit space is (m, n) 
-*- (m', n') and whose orbits are oriented by the action, takes place on the 

oriented lens space L(r, s) with 

m m ms m' modr 
r = n' n d ns d n' mod r. 

For r=0 we have (m, n)= ? (m', n') and N=S2 x SI. For r= 1, N=S3. We shall 

discuss these exceptional cases in (3.10). 
2.6. Note that the orientation reversing map 

p -* 1-p 
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on X(N*) results in an orbit space 

(m', n') > (m, n) 

and the total space L(r, s) has clearly r= -r and ss _ 1 mod r. 
Since L(F, s) =L( - r, s) = -L(r, s) we see that there is an orientation preserving 

homeomorphism between L(r, s) and L(r, s). 
This is, of course, well known. 
Actually, granting only that every homeomorphism of the torus is isotopic to 

(a, fi) -> (ua + vfl, wa + tO), where II t I = ? 1, and defining L(r, s) as the sewing of 
two solid tori, the preceding arguments need only slight modifications to prove all 
the known homeomorphism relations almong lens spaces. 

2.7. Finally consider (m, n) > (-m', -n'), that is, replace (m', n') by 
(-m', -n'), then 

L(r, s) = L(-r, -s) = L(-r, r-s) 

since -s_r-s mod r. Similarly replacing (m, n) by (-, -n), gives 

L(F, s) = L(-r, -s) = L(-r, r-s), S = P s. 
-q n 

Note that L(r, s)=L(-r, r-s). 

3. Examples. 
3.1. Let B be a closed 2-manifold and M= B x TP. The action of G is trivial on B 

and standard on TP. 
3.2. Let N be a closed, orientable 3-manifold with an effective action of SO(2). 

Let M=Nx S'. Let G act on M by 

G xNx S' Nx S" , ( 0) x (n, s) ->(qp(n), 0(s)). 

3.3. Let N be a closed, orientable 3-manifold with an effective action of G. Let 
M=Nx S", where the action is trivial on the second factor. 

3.4. Let B be an orientable connected 2-manifold with nonempty boundary. 

G x Bx D2x Sl -> Bx D2xSl 

(p, 0) x (b, p, a, 0)-> (b, p, a +pqp+qO, f3+mq+nn), 

where |P nl = + 1. The restriction of this action to the boundary, M, gives an 
effective action on a closed 4-manifold. The boundary of B x D2xS is M= 
0[(B x I) x I] x S1, that is, M= (the double of B x I) x S1. If B is a surface of genus 
g with h discs removed, then the 4-manifold in question is 

M= [(S2XSl) f"f(S2XS1)2g+h-l]XSl if g+h > 1 
and 

M=S3xS' ifg+h=1. 

Another way to look at M is as follows. The circle group G(p, q) acts freely on 
M and N= M/G(p, q) is a closed 3-manifold with a semifree circle action. In fact, 
G(m, n) acts freely on N everywhere except for h components of fixed circles 



542 PETER ORLIK AND FRANK RAYMOND [December 

corresponding to the boundary of B. Moreover N/G(m, n) is B with each boundary 
component of B representing fixed points. By [8] we conclude that 

N = (S2 X Sl)l - * (S2 X Sl)2g+h-l if g+h > 1 
and 

N = S3 if g+h = 1, 
and clearly M = N x S'K 

3.5. By virtue of the nature of the orbit structure and the cross-sectioning 
theorem (1.12) any action on a 4-manifold with all stability groups either the 
identity or G(m, n) must be equivalent to that of (3.4). It follows from ?2 that the 
N of (3.3) is a 3-dimensional torus or a lens space L(r, s) and the orbit space is a 
torus or annulus whose boundary components are weighted by G(m, n) and G(p, q). 
Conversely, the cross-sectioning theorem tells us that an action on a closed oriented 
4-manifold M with orbit structure, a weighted annulus as just described, is equiva- 
lent to this type of action. 

Thus, by just describing a specific action as in (3.3) and (3.4) (with favorable 
orbit types) we actually classify all possibilities with that given orbit structure. 
Furthermore, in the appendix, we shall show that the cross-sectioning theorem and 
the nature of the orbit structure remains valid in the continuous case. Consequently, 
this classification is also valid in the general continuous case. 

3.6. Let us consider an orbit space homeomorphic to the 2-disk and with orbit 
structure as specified: 

G(m, n) G(m', n') 

\Al* A2/ 

C* 

The straight arc A* has orbit type G(m, n) except for its right end point. A* has 
orbit type G(m', n') except for its left end point which corresponds to a fixed point. 
All other orbits are principal orbits. By a slight modification of (1.10) this action 
has a cross-section. Notice that the arc C* is the orbit space of an invariant lens 
space. Consequently, by (3.5), the original space X is the cone over a lens space 
with the action extended to the cone from the boundary lens space in the standard 
manner. The space X is a manifold with boundary (in fact a 4-cell), if and only if 
the lens space is a 3-sphere. This is equivalent to demanding In n I = + 1. Since we 
shall not discuss anything but the case where In mj = ? 1 until the appendix, we 
shall tacitly assume that the determinant's value is + 1. 

3.7. Consider the linear action G x D2x D2- D2x D2 defined by 

(P, 0) x (P1, a1, P2, a2)>(P1,al+ m 9+l n', P2, a2+ m9p+n). 
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The action is effective if and only if In n = ? 1. The orbit structure is as defined in 
(3.6) and consequently each topological action is equivalent to a linear action as 
described above. This action is clearly the extension to the cone of the linear action 
on the boundary sphere a(D2 x D2). The boundary sphere corresponds to having 
at least one of the Pi and P2 equal to 1. It will be crucial in the next section to 
describe the equivariant classification in terms of orientation preserving equivariant 
homeomorphisms. Referring back to (3.6), the arc C* is oriented from the left end 
point of A* to the right end point of A*. The boundary 3-sphere a(D2x D2) 
=D2 x D2 U cD2x D2 is represented by the lens space L(r, s) where r= Im' m 

=E= + 1 and s=O. Thus, the boundary 3-sphere has orientation e in accordance 
with the conventions of ?2. 

3.8. More generally, consider the following oriented orbit space, W*. 

(mi, n1) 

(mi +,, ni + 1) i+ l,i - 1 \(mi_1 ni-1) 

-1- 
Lt*+l,i-l 

Let the interior points together with the interior points of the arc L* correspond to 
principal orbits. The remainder of the boundary has two fixed points and three 
intervals with stability groups G(mi-1, ni- J, G(mi, ni) and G(mi +1, n+ 1) where 

m_ l= E.= +1 and m m'+ = i+1 l = +. 
ni-i ni ni ni+l 

Note that the arc Si* is the orbit space of an invariant 2-sphere Si in W. 
From the proof of (1.10) it is clear that Wis an oriented 4-manifold with boundary 

the oriented lens space L(r, s), where 

Mi-i mi+1 r =m_ s 
ni-1 ni+l 

and smi+1=mjj1 modr, -IrI<s<lrI, ifrI1 orO. 
Now, mi - ini-ni - 1mi = ei,-mi + ini-ni + 1mi = Ei + 1; hence 

mj..1 Ej 

M I-mi+1 Si+1 | 6 E+ mi _ l+ .imi + . 
mi-, -ni-1 r 

-mi+1 ni+l 
Consequently, 

i + mi -I+ imi+1-0 mod r. 

Thus, s =-EiEi + 1 r 7 O., or 1. This implies that 

Li+,,i-1 = L(r, s) = L(r, -eisi+ ) = -ese +1L(r, 1). 
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In other words, up to orientation, L is a lens space of type L(r, 1), r#O, 1. 
3.9. In fact, more is true. The manifold W is an oriented 2-disk bundle over Si. 

(In the topological case it is an associated topological D2-bundle (not vector- 
bundle) associated to a principal S1-bundle.) By definition, the characteristic class 
of the Hopf bundle is -1. Hence, if the boundary of a D2-bundle is L(r, 1) then its 
characteristic class is - r. 

The characteristic class of Wi + li - 1.is therefore sisi + 1r and hence the self inter- 
section number of Si is 

o)f = Si -S = EiEi + rr =. 
ni-1 ni ni ni+1 ni1 ni+j 

It still remains to describe the self intersection number when r=0, and 1. Of 
course if r = 0, the self intersection number is 0 since the bundle is trivial. Note that 
the formula is still valid in this case, since r = 0. 

In order to cover the case r= 1 we shall now give an alternative proof. The 2-disk 
bundle over the 2-sphere Si can be obtained by pasting together along the equator 
of Si two 2-disk bundles over the upper and lower hemispheres. 

(mi., ni) 

(Mi + l, ni + l)/ 1 Elu W2* (mi -l, ni - l) 

L* ((Mi l,1 ni -l), (mi + l, nt + l)) 

We want to show that L((mi - 1, ni - 1), (mi + 1, ni + 1)) =L(r, s) -EiEi + L(r, 1). We 
regard L(r, s) as given to us as the lens space with oriented orbit space 

(Mi+,, ni+,)- > * (mi - , ni -l). 

Following (2.5) we split L(r, s) up into the union of two solid tori. We choose, in 
the terminology of (2.5), (m, n)=(mi+1, ni+1), (m', n')=(m_j1, njj1) and (p,q) 
=(mi, ni). If 

p ml mi mi + = mi1 = 1, 

q n ni ni+1 
then 

r mi ml |mi_ mi+1l 
n' n ntn-1 ni+1 

p mi' __Mi i 
S~~ = 

I -e i. 
q n' ni ni- 

Thus, 

L(r,s) = L( m'1 m+1 mi1 mi 
ni-. ni+1 ni-. ni 

= -E;(1)L(r. 1)4 = -E;E:+1.L(r. 1). 
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On the other hand, if E = -1 = E + 1, then 

Pm' m mt... =_ mi.. mt =_i. 

-q nI ni ni-, ni-, ni 

Hence L(w, t) (in the notation of (2.5)) is 

L( m-j1 mi+1 l = L(r, -ei) = -eiL(r, 1) =-L(r, s). 
nifl ni+ / 

Hence L(r, s) = eiL(r, 1). Since ei + 1= - 1, in the last case, L(r, s) is once again 
- i + 1iL(r, 1). We have therefore shown that the 2-sphere Si, over which W is an 
oriented 2-disk bundle, has self intersection number ei + 1eir, for every value of r. 

4. Equivariant classification. In this section we shall give an equivariant 
classification for actions without finite stability groups (E= 0) and where either 
Fu Co 0 or the manifold is not compact. This section may be viewed as a 
numerical form of (1.10) and (1.12). 

4.1. Weighted orbit spaces and orientation. Let G act smoothly on a 4-manifold 
M with orbit space M*. We shall now make precise the remarks in (1.12). Each 
orbit in M* has associated to it a certain orbit type which is characterized by the 
stability group of the points on the orbit together with the slice representation at 
the given orbit. The slice representation at a fixed point is just the action of the 
stability group on the normal disk. This action is determined in the case of a fixed 
point J;* by the pairs + G(mi, ni), that is G(mi, ni) or G(- mi, - ni), and 
+ G(mi+1, ni+ 1), where I mi m ei= + 1. For a C-orbit of type G(m, n), we have 
the standard representation. For an E-orbit of type Zqc G, we have the particular 
linear representation of this finite cyclic group on the rotations of the disk. This 
representation is described in terms of a pair of relatively prime integers. The orbit 
space together with its orbit types and slice representations is called a weighted 
orbit space. 

Let M* and M'* denote the orbit spaces of a smooth action of G on the closed 
oriented smooth 4-manifolds M and M'. A diffeomorphism (homeomorphism) of 
M* and M'* which carries the weights of M* isomorphically onto the weights of 
M'* is called a weight preserving diffeomorphism (homeomorphism). 

For classification purposes it is often convenient to work with a specific orienta- 
tion. We orient the group G once and for all and then an orientation of M determines 
an orientation of M* and vice ve-rsa, provided that there are no stability groups of 
the type which reverse the orientation of a slice. The orientation of M can be 
described as the product orientation of the set of principal orbits-this bundle is an 
oriented bundle. When the orbit map has a cross-section then we always assume 
that the orientation of the image of M*, via the cross-section, is that induced by the 
cross-section and that the orientation of M is consequently compatible with it. In 
particular, suppose we have a portion D* of the orbit space M*: 
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(mi + 1 ni + 1) D* \ms ni) 

*i+li 

D is a 4-disk and if the orbit space is assumed to be oriented as indicated the 4-disk 
becomes a cone over the 3-sphere Li+1,, with orientation mli mi+ 1- Ei times the 
standard oriented 4-disk. (Here the cross-section lifts the oriented 2-disk D* into 
the 4-disk D and the product orientation of D* x G induces the orientation on the 
4-disk via the map D* x G -> G(X(D*)) = D, where X denotes the cross-section.) 

4.2. Let G act on the 4-manifolds M and M' such that the orbit maps have 
cross-sections X and X'. 

From ?1 it follows that if G acts smoothly and effectively on an oriented closed 
smooth 4-manifold, then the orbit map has a cross-section if and only if there are no 
finite stability groups and if all orbits are principal then the principal bundle is 
trivial. 

THEOREM. Let G act effectively and smoothly on the closed smooth orientable 
4-manifolds M and M' such that the orbit map has a cross-section. Then there exists 
an equivariant diffeomorphism h of M onto M' if and only if there exists a weight 
preserving diffeomorphism h* of M* onto M'*. Furthermore, if M and M' are 
oriented and the orientation of M* and M'* are those induced by M and M', then h is 
orientation preserving if and only if h* is orientation preserving. 

4.3. Of particular value for the topological classification of M, i.e. the identi- 
fication of M in terms of its weighted orbit space, is the case when M* is an 
oriented 2-disk. 

If M has no fixed points then M= S3 x S1 by (3.4). Otherwise we assert that M is 
simply connected. 

To see this fact remove a small equivariant 4-cell about a fixed point. This 
corresponds, using the cross-section, to removing a small closed 2-cell about the 
image of the fixed point in the orbit space. The cross-section now retracts to the 
remaining boundary. This deformation lifts equivariantly to a deformation of the 
manifold to a linear chain of 2-spheres. Their number equals the number of fixed 
points minus two. The fundamental group of the total space is therefore trivial 
by Van Kampen's theorem. 

Let us now represent this 4-manifold in terms of its weighted orbit space. By 

M = {(m1, n1), (M2, n2), . . ., (mt, nt)} 



1970] ACTIONS OF THE TORUS ON 4-MANIFOLDS. I 547 

we mean the simply connected oriented 4-manifold whose weighted orbit space is as 
described in (4.1). We may assume without loss of generality that MW* is oriented 
from (mi, ni) to (mi+1, ni+1). 

Suppose M and M' are simply connected oriented 4-manifolds described as 
above. Then we obtain the following result. 

THEOREM. There is an orientation preserving equivariant diffeomorphism between 
M=={(m1, n1), (M2, n2), .. ., (mt, nt)} and M' ={(m', nj), (m', n'), . . ., (mr, n' )} if and 
only if t=t' and for some fixed k either (mi, ni)=(m'+1, n'+ ) or (mi, ni)= 

(m'k 4 .-n'i),for i=1 .. t. 

4.4. Now we shall discuss the general case. Assume therefore that the action on 
M has the following properties: 

(i) There are no nontrivial finite isotropy groups. 
(ii) If all orbits are principal, then the bundle is trivial. 
These conditions imply that if F u C= o then the manifold is a product. If 

Fu C=A 0 then according to (1.12) M has a cross-section and M* is a 2-manifold 
with boundary. Interior points correspond to principal orbits. Boundary points 
correspond to C-orbits or (isolated) fixed points. The weighted oriented orbit 
space completely determines the action up to orientation preserving equivariant 
diffeomorphism. It has the following arithmetic invariants: 

g>O; the genus of the oriented 2-manifold M*. 
s>O; the number of boundary components of M* all of whose orbits are 

C-orbits. 
t>0; the number of boundary components of M* each having fixed points. 
s; a specific orientation assigned to the orientable 2-manifold M*. Since an 

orientation for G has been chosen once and for all, the orientation s determines an 
orientation for M. 

<pi, qi>; the ith boundary component of M*, consisting entirely of C-orbits with 
stability group G(pi, qi) or equivalently G(-pi, -qi). <pi, qi> denotes either para- 
metrization together with an orientation of the boundary circle compatible with S. 

{m, n}i; the ith boundary component of M*, which contains ti fixed points, ti > 2, 
can be represented by {m, n}i={<mi,l ni,l>,.. ., <mi,t, ni,t>}. Here <mi,, ni,j> 
= ? (mi,j, ni,j) is a parametrization of the stability group of the jth oriented arc of 
the ith boundary component. The order of the entries in {m, n} is determined up to 
cyclic permutation. 

With these numerical invariants one can translate the theorem of (1.12) to read: 

THEOREM. Suppose that M and M' are closed, oriented 4-manifolds with G- 
actions such that C u F=A 0 and E= 0. Then there is an equivariant orientation 
preserving diffeomorphism between M and M' if and only if 

{e; g; s; t; <Pl, q1>, ... , <Ps, qs>; {m, n}1, .., {m, n}t} 
= {s'; g'; s'; t'; <pt, q'>, ., <p , q >; {m', n'}1, . . ., {m?1, n}tj}, 
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where equality means identical except that <p, q>'s may be permuted and the {m, n}'s 
may be permuted. 

5. Topological classification of the simply connected G-manifolds. In this section, 
the smooth actions of the torus are classified on closed, smooth simply connected 
4-manifolds. Actually the vanishing of H1(M; Z) will imply simple connectedness. 
In the appendix we drop the assumption of differentiability without any weakening 
of the results. Furthermore, when we also drop the assumption of local Euclideaness 
the analogues of the results of this section will still be valid but the arguments of 
course are considerably more delicate. 

We shall assume that M is a smooth closed 4-manifold, H1(M; Z) = 0 and G acts 
smoothly and effectively on M. 

5. 1. LEMMA. The action has fixed points. 

Proof Clearly, H1(M) = H3(M) = 0, hence H2(M; Z) is free and H3(M; Z) =0. 
The Euler characteristic of M, x(M) = 2 + rank H2(M). It is well known that for a 
torus G, the Euler characteristic of the fixed point set x(F; G) = X(M). Thus G acts 
with at least 2 fixed points. 

Since 71(M) -F- iri(M*) is surjective and the Hurewicz homomorphism is natural, 
the natural homomorphism H1(M; Z) -- Hi(M*; Z) is surjective. M* is a 2- 
manifold, with the fixed points on the boundary, and hence M* is a 2-disk. 

Let f1,f2,.. .,ft denote the fixed points, t>2, andfi* their images on M*. The 
arc, Si*, betweenfi* andf * 1 on a(M*) represents an invariant 2-sphere Si. Denote 
its stability group by G(mi, ni). 

f *~~A 

/ St(m~~~S2 2, n2) 

(mi, ni) S* 2 

fi*+ 19 S*|(l l 

(mt, nt) 

ft* 

Recall that 

msi_1|=e= +1, i =2,3, ..., t, 
ni-1 nj 

mt ml = Si = ? 1, 

nt ni 
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where si is the orientation of S3 viewed as the boundary of a neighborhood of the 
fixed pointfi (see 3.7). 

Next we show that all the interior points of the disk represent principal orbits. 

5.2. LEMMA. Let M be a closed, smooth orientable 4-manifold with an effective G 
action. If H1(M; Z) = 0, then the only finite isotropy group is the identity. 

Proof. The homology argument above assures the existence of fixed points. By 
(1.4) if y E M, Gy =Zqc G, then y* is an isolated interior point of M* if G, # e. 

Let A* be an arc from some fixed point fi* to y* in M* such that the interior 
points of A* correspond to principal orbits. Let A be the lifting of A* to M. The 
saturation X of A, i.e. G(A), is the cone over a torus with the base of the cone 
collapsed by the free action of Zqc2 G on the toral base. Consequently, H3(X; Z) Zq 
Therefore the exactness of 

0 = H3(M; Z) -> H3(X; Z) -> H4(M, X; Z) 

and the freeness of H4(M, X; Z) implies that Zq must be the identity. 
5.3. Now we turn to the homeomorphism classification of these manifolds. Our 

building blocks are the manifolds with 2 ? t <4. 
Let in general M denote M with reversed orientation and let P = CP2, Qo = S2 x S2 

and Q, =P # P, the other S2 bundle over S2. (The structure group in the smooth 
case is SO(3). In the topological case, the group of orientation preserving homeo- 
morphisms of S2 onto itself deforms onto the rotation group SO(3).) 

5.4. t=2. 

(M2, n2) 

12 2,1; 

\ I ~~L2,1 / 

(ml, ni) 

Since IMl M21 =82= ? 1 we have that L2,1 = S3 and M= W2,1 U W1,2. Both W1,2 
and W2,1 are 4-cells, hence M=S4 (see (3.6)). Thus there are infinitely many 
distinct actions corresponding to pairs (mi, ni), i= 1, 2. Notice that all possible 
distinct inequivalent actions are related to the action {(0, 1), (1, 0)} by an auto- 
morphism of G, that is, if Imi M21 =2= ? 1, there exists an automorphism of G 
sending G(0, 1) and G(1, 0) onto G(m1, n1) and G(m2, n2). 
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5.5. t=3. 

O 

(M2, n2)/ (ml, nl) 

I Wt, / A~~, 

(M3, n3) 

Note that L31 =S3. Also W1,3 is a 4-cell and W3,1 is a D2-bundle over S2, with 
Euler class 2e3In l n3 =-1l8283 =S2.S2. If S2*S2=1 we have the complex pro- 
jective plane M=P; if S2 ' S2 =-1, then M=P. 

Notice that, if S2 - S2 = 1 one can solve for (M3, n3): 

M3 = -el62(Mi2+ 62Ml), n3 = 61(n? +n2). 

It is easy to see that each action on P arises from an action on the 4-disk. We have 
the standard action 

(Pl, (al, P2, aX2) - (Pi, a1 + ml + n 0, a2 + M2?+ n28) 

on the 4-disk. On the boundary 3-sphere L2,1 the group G(M3, n3) operates freely, 
it is in fact the Hopf fibering (or its inverse). If we collapse the boundary by the 
action of G(M3, n3) we obtain P (or P) with a torus action as above. Obviously, 
there are an infinite number of inequivalent actions but once again any two are 
related by an automorphism of G. 

5.6. t=4. 

(m3, n3) (M2, n2) 

/~~~~~3 1 

\ W1,* 3\O 

(m', n4) (ml, ni) 

Let r, mIt - tl + 1counting mod 4. In particular, 

m1 M3 iM2 m4 

ni n3 n2 n4 
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Observe that M is the union of two D2-bundles, W3,1 with 0-section S2 and W1,3 
with 0-section S4. They are pasted together along their boundaries L3,1 and L1,3. 
Furthermore, M may also be constructed from the W4,1 and W1,4 over S3 and S1. 
If r2=0, then G(m1, n)= ? G(m3, n3) and L31 would be S2 x S1. When r2=0, the 
structure groups G(m1, n1) and G(m3, n3) are equal and hence one can easily see 
that W4,2 and W2,4 are pasted together to form an S2-bundle over S3 (or S1). Thus 
M is either Qo or Q, since the structure group G(m1, n1) can be reduced to SO(3). 

We shall show that if both r3 and r2 0, then necessarily r2 or r3 equals + 1. 
Consequently, M will be the union along a 3-sphere of D2-bundles with charac- 
teristic class + 1. Hence, M will be the connected sum P with itself or P with itself. 
Consideration of the intersection matrix for H2(M; Z) will resolve the ambiguities 
according to the homotopy type classification of simply connected 4-manifolds [3]. 

First, if r2 =0, then (m1, n1) = ? (M3, n3). The intersection matrix for the generators 
S2 and S3 of H2(M; Z) is 

A (O E3 ) 0 1) 

A 3 ( 384r3 ( s324r3 

If r3 is even, M= Q0 = S2 x S2, and if r3 is odd, M= Q1 =P . 
Suppose r2 =0, then 

iMl M2 E iM2 M3 

nl n2 n2 n3 

yield 

M2 = (62M3+? 3Ml)/r2, n2 = (63n+ 62n3)/r2. 

On the other hand, 

iM3 Mi4 = iM4 M1l 

n3 n4 n4 ni 

yield 

M4 = (64Ml + 6lM3)/-r2, n4 = (8ln3 + 64n)/!- r2- 

Thus we have 

M3 _ -283m1 mod r2, n3 -8283n1, 

M3- -8184m1 mod r2, n3 -8184n1, 

and 

M2 = (82/r2)(m3 + 8283m), n2 = (82/r2)(n3 + 8283n1), 

m4 = (-81/r2)(m3 + 814m8), n4 = (-1l/r2)(n3 + 8l84n1). 

If 8184 = -8283, then we have 

2m3 = r2(82m2 - 81m4), 2n3 = r2(82n2 -e1n4). 

For jr2I > 2, we have a contradiction to the fact that (M3, n3) are relatively prime. 
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If r2=28, = +1, then 

m2 3(e2m2 - 81m4) 

n2 8(E2n2 - 81n4) 1 

=> r3 = 8284 = + 1. 
(Em- e1m4) m4= 

- 81n1)= n4 
4(E2n2 

- _pnj) n4 =E 

Thus, m3 = 8(2M2- e1m4), n3 = 8(2n2- 81n4). Since r3 = 8284= 1, we have 

L4,2= -E3E4L(r3, 1)= -e2e3SS , and consequently, M= W2,4 / W4,2. 

The self intersection matrix for generators S1 and S3 iS 

A 8-1848 
0 8 

{2838 
0 

A 8283)(8 2 82838) 

Hence, M=P#P orP#P. 
If r2=8= + 1, then L3,1= -E2E3 S3 and M= W1,3 # W3,1. The self intersection 

matrix for S2 and S4 iS 

A =82838 
0 

= (82838 08 ) 

0 O -4E18} \ O 2838 

and again M=P # P or P#P. Note that r3= 28e2e4 =2r2e2e4= ?2 in this case. 
If, on the other hand, 8184=8283, then (M2, n2)= -8182(m4, n4) and hence 

r= =r3=. The two disk bundles W1, 3 and W3,1 are sewn together, as in the case 
when r2 =0, so that they give a 2-sphere bundle over either S2 or S4. The inter- 
section matrix of S2 and S3 iS 

A 

= (82:3r2 83) (8283r2 1) 
\ 3 ? 0 1 OJ 

If r2 is even M= QO = S2 x S2 and if r2 is odd M= Q, =P # P. 
As a summary we have the table: 

t M Condition 

2 S4 

P e1e2e3 = - 

3 
P e1e2e3= 1 

r2= 28, e2e38 = (:r3= e3e4) 

4 P#P e1e4 = - 283 > or 
) r2 = 8 2e38 = 1 (=>r3 = 2e3e4) 

r2= 28, e2e38 = -1 (= r3 = -e3e4) 

P~~P e~1e4 = -23 or 
I = => , 823 8 = -1 (=>r3 = -2e3e4) 

QO 5 S2 X |2 e1e4 = e2e3, both r2 and r3 are even (at least one is 0) 

Q P # P 1ee4 = e2e3, either r2 or r3 is odd (the other one is 0) 
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Finally, we remark that when t=4, unlike t=2 and 3, automorphisms of the 
group G do not yield all the actions from a given action. 

5.7. t>4. 

THEOREM. If t > 4, then M is an equivariant connected sum of P, P and QO. 

Proof. We proceed by showing that if t > 4, then there exists an arc L!1, such that 
Li-j= + S3 and hence M= Wi,j // Wj,i. We use induction and the explicit descrip- 
tions above to complete the argument. 

(mi. ni) 

(E,t, nt -1)L ) 

(0, (M2, 
-8182) 

(-1e, 0) 

An automorphism, or what is the same a change of parameters, of G alters the 
action without changing the manifold. Thus we may assume, for convenience, that 
(mt, nt) = (O, 1) and (m1, n1) =(-81, 0). Since 

I-E m21 
| 

-01 2 
= 82, o n21 

n2= 8182 and since 

mtil 0 

nt-1 1 - 

mt-1= Et. Now consider the sequence 

-e1 m2 Mi| I et 0 

where Imi/Oj means oo. 
(i) If mi = O, then Ini =1. Suppose mi = 0, for i < t-1. Then choose L* i if ijA 2, 

and L* 1,2 if i=2. In either case L is a 3-sphere. 
(ii) If ni = O, then Imi =1. Suppose ni = O, for i > 2. Then choose L *j if i < t-1 

and Lt1,2 if i= t- 1. Again L is a 3-sphere. 
(iii) If for some i, Imi/niI = 1, then mi= ? 1, and ni= + 1 and we may choose 

L*j, unless i= t- 1, in which case we choose L* i. Again L is a 3-sphere. 
(iv) We now show that at least one of the above conditions hold. Suppose not, 

then there is a first integer j- 1, such that IMj 1/nj 11 > 1 and Imj/njI < 1, for 
2 ?-1 < t-3. 
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Since 

rn1.... m1l 
ev = ~= mj-_lnj-mj^nj ,, 

nji1 nj 

we have mj 1nj=8j?+mjnj-1, and in particular, jmj J inji < ? + |mjm |njnll. But, 

(injl + 1)(jnj-ll + 1) < l + mmjl Inj-ll. 

This yields a contradiction as Inj1il >0 and lmjl >0. This completes the proof. 
Without normalizing, what this actually proved is that for adjacent pairs 

(mi, ni) and (mi - 1, ni -,) one can always find a different pair (mj, nj) equal to either 
? (mi, ni), ? (mi - 1, ni - 1) or (emi ? mi - 1, eni + ni - 1), t > 4. We wish to thank George 
Cooke for supplying part of the computation above. 

5.8. REMARK. The decomposition of M as a connected sum is not unique. In 
particular the following diagram answers in the affirmative a question of Milnor [3]: 

(1,0) (1,0) 

(I0 > 1)( 0 l1) 

/ \ (0 ,~~~~~~~~~~~~~~~~~~~~~~~~~(5 1) 

(1,0) 

(1,~0) 

(0,1) (1, 1 ( 1 , 0) 

(0, 1) (0, 1) 

Cp2#S2XS2 Cp2/(-CP2)#(CP2) 

5.9. REMARK. We have already observed that the submanifold Wi - 1 i + 1 is a D2_ 

bundle over Si with characteristic class 

mii mi+1 
Xi = 6i6i+ I 

ni-1 ni+1 

In general the manifold Wi,j is the result of the linear plumbing (in the sense of 
Hirzebruch [2]) according to the graph 

Wji+ i +2 
... -1 

5.10. REMARK. P#P={(I, 1), (1, 0), (1, 1), (2, 3)} is a simple example of an 
action of a connected group on a manifold that is a connected sum, with the property 
that there is no invariant 3-sphere separating the components of the connected sum. 
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Appendix. Let X be an orientable 4-dimensional cohomology manifold (cm) 
over the rational numbers Q. We shall assume that there exists a closed discrete 
set Ac X for which Y= X- A is a cm over Z. This set A may be empty. Let the 
torus G = SO(2) x SO(2) act effectively on X with a finite number of connected 
components of orbit types near each point of A, and assume A is contained within 
the fixed point set. (This is a technical assumption which actually can be dropped, 
however, our arguments would be much more complicated and the conclusions 
would have to be modified somewhat.) 

THEOREM. The orbit space X* is a 2-manifold with boundary. All principal orbits 
and E-orbits are in the interior and the boundary consists of C-orbits and F-orbits. 
The 4-cm X is locally Euclidean at all points except possibly at A. If there are no 
E-orbits and F U C$= 0 then the orbit map has a cross-section. 

Proof. Let x E X be on a 2-dimensional orbit. Choose a slice S,. It is necessarily 
a 2-cm over Z and by Wilder's theorem [10, p. 272] a locally Euclidean 2-manifold. 
Now G. operates effe'i-tively on S, as a finite group of orientation preserving 
homeomoprhisms and so SX/GX, which is a neighborhood of x* in M*, is an 
orientable 2-cm over Q by [7, Theorem l(i)]. Thus, by Wilder's theorem again, in 
the neighborhood of x*, M* is an open 2-manifold and consequently by choosing 
a small closed 2-cell about x* the slice can be cut down to an invariant closed 2-cell 
whose orbit space is the given closed 2-cell about x*. Therefore G-, which operates 
on Sx, is a cyclic subgroup of G and the action restricted to the invariant closed 
2-cell in Sx is topologically linear. Observe that if (G, X) was assumed to be a 
toral action with all orbits two dimensional and X was only assumed to be a 4-cm 
over Q, we would reach the same conclusions as above. 

Let us now consider one-dimensional orbits. Again we take a slice Sx at x which 
lies on a 1-dimensional orbit. Let us take a connected component G' of Gx. This 
is a circle subgroup G(m, n) with (m, n) = 1. It operates effectively on the connected 
3-cm Sx over Z. All such actions are classified in [8]. In particular, Sx is locally 
Euclidean and the action (G(m, n), Sx) has a fixed point, namely x. However, 
when a circle operates on a 3-manifold the action of the circle is free (locally) away 
from the fixed point set and the orbit map has a cross-section [8]. Thus SX/GO is a 
2-manifold with boundary corresponding to the image of the fixed points and all 
other orbits are principal. Choose a closed 2-cell neighborhood about x*. Use the 
cross-section to obtain an invariant (under GO) closed 3-cell neighborhood of x in 
Sx. It is easy to see that this 3-cell must also be invariant under Gx (since Gx= 
GO x GX/GO and the actions commute). On the boundary 2-sphere we find SO(2) x H, 
where H- GX/GO is a finite subgroup of G, acting effectively. But then we can find 
a group isomorphic to Zp x Zp acting effectively on the 2-sphere and preserving 
orientation. This is impossible, hence Gx = Gx. 

Finally we consider fixed points. Let x E F(G, X) and FX(G, X) the component 
of F(G, X) which contains x. Let {G(mi, nj)} be the collection of 1-dimensional 
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stability groups for which F(G(mi, ni), X) n FX(G, X) =# 0. Let F(G(mi, ni)) denote 
the component of F(G(mi, ni), X) containing x. Put no(x) = dim FX(G, X) and 
ni(x) = dim FJ(G(m2, ni), X). If x E A we have assumed that there are only a finite 
number of G(mi, ni), if x 0 A, then we can restrict ourselves to a sufficiently small 
neighborhood of x with compact closure so that at most a finite number of 
G(mi, ni) appear. By Borel's formula [1, Chapter XIII, 4.3] we have 

k 

4-no(x) = 2 (ni(x) -n(x)), 
i=l 

where i is summed over all the stability groups G(mi, ni) for which 
FX(G(m?, ni), X) =# 0 . Since ni(x) > no(x), for i> 1, and since ni(x) = 0 or 2, and 
no(x) =0 or 2, we see immediately that k =2, no(x) =0, and ni(x) =2, and x is 
isolated among the fixed points. 

Since x=Fx(G(mj, nl), X) n F (G(m2, n2), X) and both Fx(G(m1, n1), X) are 
connected 2-manifolds, the orbit x* is a limit point of both open arcs 
(FX(G(m?, ni), X))* on the boundary of the 2-manifold X* -F*. We now show 
that x* fits onto the boundary as one would expect. Since x is isolated from the other 
fixed points we can assume that x is the only fixed point by choosing a suitably 
restricted neighborhood of x. Thus X* - x* is a 2-manifold with boundary and x* 
is the one point compactification of a compact neighborhood of x* with x* 
deleted. Because X* is cohomology locally connected over Q, x* cannot be the 
limit point of a number of handles from interior of X* - x* nor could it be the limit 
point of a number of boundary components with stability groups of type G(m, n) 
other than Fx(G(ml, n1), X) and F (G(m2, n2), X). Thus, the neighborhood of x* 
in X* looks like: 

Fx(G(mj, ni), X) FxG(M2, n2), X) 

Because X* is Hausdorff the compactification of the deleted neighborhood of x* 
yields a 2-manifold with boundary. (Actually a more algebraic description of this 
last procedure can be found in [6].) We can now show that the interior points of 
X* near x* contain only principal orbits. If x* E A we have already assumed this 
and if x* E Y then in a neighborhood of x* there are at most a finite number of 
orbit types. If it were possible for x* to be a limit point of E-orbits then there would 
exist an infinite number of orbits with the same finite stability group converging to 
x*. By choosing a prime cyclic subgroup, Zp, of this finite subgroup we would 
obtain a sequence of 2-manifolds with x* as a limit point and hence F(Zp, X) could 
not be a cm over Z,. 
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Notice that unlike the smooth case it is no longer necessary that G(m1, n,) 
n G(m2, n2) be the identity. However, certainly nI, 2I A#0. It only remains to 
describe the topology of X near x E F. Since near x* only principal orbits and orbits 
of type G(m1, n,) and G(m2, n2) appear we can choose an arc B* as illustrated. 

(ml, n1) (M2, n2) 

B= ir- l(B*) (where 7T is the orbit map) is an invariant lens space L(r, s) with the 
usual notation of ?2. The arguments of ?1 apply directly and we see that the region 
bounded by L(r, s) and containing x is just the cone over L(r, s) and the action of 
G on this cone is (topologically) just the extension of the action of G on L(r, s) to 
the cone. We see also that X is locally Euclidean at x* if and only if L(r, s) is a 
3-sphere, that is, if and only if I m21 = + 1. This is also equivalent to saying that 
X is a 4-cm over Z at x. (This is not true for an arbitrary 4-cm over Z but true for 
one which admits an effective torus action.) 

?1 now applies for construction of a cross-section under the appropriate hypoth- 
esis: Note that 

(M2, n2) (ml, ni) 

is the suspension of the lens space L(r, s). 
This completes the proof of the theorem and also completes the proof of the 

theorem stated in (1.12). 
REMARKS. In the compact case when X* is a closed disk, and E= 0, F# 0, we 

easily see that X is simply connected. On the other hand, if H1(X; Q) = 0, X is 
compact, then the arguments of (4.1) imply that X* is a closed 2-disk. If we also 
assume that H1(X; Z) = 0, then an inductive argument rather different from that 
employed in (4.2) implies that there are no finite isotropy groups. In particular, X 
would then be simply connected. 
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Of course, one has the analogues of the equivariant classification theorem and no 
doubt the complete analogue of ?5 can be developed. 

EXAMPLE. In order to show that the nonmanifold points introduced above are 
natural in our context we shall define an action of T2 on an algebraic variety V 
with an isolated singularity. Topologically, V is just a cone over a lens space. 

Let T act on C2 by 

((p a) X (X, y) ->(e'Ox, ei0y) 

where 0? _p < 27r, 0 < 0 < 27r and x and y are complex numbers. 
Define a map 

f: C2 _-> C3, f(x, y) = (ixm -ym, xm - iym, (4i)llmxy). 

Note that points in the image Vc C3 satisfy the equation 

(ZO, Zl, Z2) e V 0 z+z2+z2 = 0. 

The point (0, 0, 0) E V is an isolated singularity and it is usually called a 
"quotient singularity" of C2. There are m distinct points of C2 mapping onto a 
given point of V-{0, 0, 0}. 

The T2 action defined above induces an action of T2 on the variety V. Notice 
that this action is not effective, it has stability group Zm on V- {0, 0, 0}. If we divide 
out by the stability group, we again obtain an action of T2 on V and with suitable 
choice of coordinates for T2 the orbit space may be represented as 

(0,1) (m,0) 

We know from [4, p. 80] that V is just the cone over the lens space L(m, 1). From 
the orbit structure we see that the action is in fact the cone over the action on L(m, 1). 

The diagonal action, p= 0, 

(T, ')(ZO, Zl, Z2) _>(eimOzo, eimOzi, ei2<%2) 

is the usual S1 action on V. This circle action is defined on all of C3. 
We doubt very much that the T2 action on V above can be topologically ex- 

tended to all of C3. It certainly cannot be extended algebraically. Furthermore a 
topological extension that leaves S5- V invariant would imply that S5-V= 

S5 -L(m, 1) fibers over the torus, which is impossible. (It fibers over S1 with simply 
connected fiber [4].) 
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